EFREI - M1 IFM Numerical analysis applied to financial issues

Exam

Exercise 1 To approximate the solution to the ODE

{ y'(@) = f(t,y®), (1a)
y(0) =2. (1b)

we propose to use the Adams-Moulton scheme

5 2 1
Yn+2 = Yn+1 = At(ﬁf(t’”z,y,“z) + gf(th,J/nH) - Ef(fn,J/n) . (2)

1. (a) Scheme (2) is a 2-step scheme (see Definition 2.9 in the lecture notes) characterized by

-1 2 5
(XOZO, (112—1, azzl,ﬁoz—,ﬁlzgandﬂzz—.

12 12

According to Prop. 2.6, this scheme is consistant iff

2 2 2
Zak:Oand Zkak= Zﬁk.
k=0 k=0 k=0

We easily check that
2 2 -1 2 5 2
Y ag=0-1+1=0and ) kay=0x0+1x(-D)+2x1l=1=—+-+-—=) fy.
k=0 k=0 123 12 5

(b) The Dahlquist statement (Prop. 2.7) ensures that the scheme is stable if the polynomial p(x) =
> (xkxk has itsroots in[—1,1] and roots of modulus 1 are simple. Here, we have p(x) = x2—x=
O0<k=<2
x(x—1) whose roots are 0 and 1. Hence the stability.

(c) Stability and consistency imply the convergence of the scheme due to the Lax—Richtmyer theorem
(Th. 2.2). The fact that a scheme is convergent means that if we denote by (y,,) the numerical so-
lution and by y the exact solution, then y(t") — y, goes to0 as At goes to0: the more At decreases,
the more accurate the numerical solution (close to the exact solution).

(d) We apply Prop. 2.8 and assess each i = 2 until the relation in Prop. 2.8 is not satisfied:

e i=2: ¥ Kar=0x0+1x(-1)+4x1=3=2(0x7+1x5+2x3)=2 ¥ kpy. The
O<k=2 O<k=<2
scheme is at least of order 2.

e i=3: Y Kap=0x0+1x(-1D+8x1=7=30x 3 +1x5+4x3)=3 ¥ Kk?Py. The
0<k=<2 0<k=<2

scheme is at least of order 3.

e i=4: ¥ kKap=0x0+1x(-D+16x1=15#16=4(0x 5 +1x5+8x3)=4 ¥ KBy
O0<k=2 O0<k=2
The scheme is exactly of order 3.

(e) Judging from the definition t" = (n —1)At, we have t1 =0, 1?2 = At and t = 1, which is coherent
with the domain of study [0, 1].

(f) As Scheme (2) is a 2-step scheme, we need two initializing values (to compute y3;, we need to
know y, and y;).

(g) Asy, must be an approximation of J(t') = $(0) = 2 according to (1b), we choose. We now
tackle the computation of y» = y(t%) = y(At) which we do not know. As Scheme (2) is of order 3,
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we must choose a value which is accurate at order 3, that is to say y» = §(At) + G (A 3). To do so,
we perform a Taylor expansion (Prop. 1.17):

2
(A1) = P(0) + Ary' (0) + ATI;?”(O) +O(AL).

7'(0) is deduce from ODE (1a) and from the initial condition (1b): y'(0) = £(0,7(0)) = f(0,2).
Likewise, to compute y"(0), we differentiate ODE (1a) once to obtain by the chain rule
f of

N/ i N _ g N N 6_ N _9 s N g ~
V= [f(63m)] = at(t,y(t))w(t)ay(t,y(t))— at(t,y(t))+f(f,y(t))ay(t,y(t))-

Hence we set| y» =2+ Atf(0,2) +(atf(O,Z)+f(0,2)6yf(0,2))AT’2 .

(h) In Scheme (2), yn+2 is present in both sides of the equality. Thus, given y, and Y41, it may not
be possible to compute y,+2. The scheme is implicit.

2. (a) Inthis particular case, ODE (1) reads

{ y'(0) =y, (3a)
y(0) =2. (3b)

It is thus a 1st-order linear ODE with constant coefficients (see (2.2) in the lecture notes). The

exact solution y is given by| (1) = 2e" |.

(b) Scheme (2) applied to ODE (3a) is

5 2 1
yn+2_yn+l:At(EYn+2+§J/n+1_EJ/n)- 4)

(c) As stated in Q. 1(h), the Adams-Moulton scheme is implicit. It may not be possible to compute
¥Yn. But in the linear case of Q. 2, (4) leads to

S5At 2At At

(I—E)Yn+2—(1+T)J/n+1+E=0. Q)

Provided that 1 - % # 0! and % # 0, relation (5) defines a 2nd-order linear induction with
constant coefficients (p. 10 in the lecture notes). It is characterized by

Atz) r=1- 28 2At At
’ 12)

az2,ﬁz2(1+At+— =l-—,n=-1-——andf =—.
2 3 12
To compute y,, we study the characteric equation {r? +nr +0 = 0. Given that
2 )
A=nq —4(0:1+At+EAt >0,

we deduce that y, = xr{* + Ar)’ wherex and A can be expressed from a and .

(d) The 3rd-order Runge-Kutta scheme (see p. 27 in the lecture notes) applied to ODE (3a) reads

At
Zn+1 =Zp + ?(kl +4k2 + kg)

IWhich is always the case since 1 — % Z0= N# 1—52 +1¢N.
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with
ki = f(t",zp) = zn,
kzzf(t”+%,zn+%k1):znx(1+% ,
ks = f(t"", zn + AtQ2ks — K1) = 2y x (1 + AL+ A1),
Hence

A AP
Zp+l = 2p X 1+Al’+7+? .

(e) The previous relation shows that (z,) is a geometric sequence (p. 10 in the lecture notes). We

deduce that

A2 A!
e

A2 AT
Zn=z1 |1+ At+—+— )
2 6

1+At+ —+—
2 6

(f) Both Adams-Moulton and Runge-Kutta 3 (RK3) are 3rd-order accurate. However, in the gen-
eral case, the Adams-Moulton scheme is implicit (unlike RK3) which is more expensive from a
computational point of view. Thus RK3 seems preferable.

Exercise 2 1. The Cholesky decomposition (Prop. 1.9): If A € 4, (R) is symmetric and positive-definite
(Def. 1.8 and Prop. 1.12), then there exists B € ., (R) upper triangular such that A= BT B. Moreover,
there exists a unique B such that B;; >0 foralli e {1,...,n}.

2. To build the algorithm, we notice that

n T n min(i,j)

Ajj=) (B)ikBkj=) BkiBrj= ). BiiBij
k=1 k=1 k=1

since B is upper triangular (which implies B;j = 0 if i < j). Hence we can compute components of B

row by row. The MATLAB function reads

Junction B=chol_yp (A)
% Compute the Cholesky decomposition
% of a symmetric positive—definite matrix A

n=length (A(1,:)); % number of columns
m=length (A(:,1)); % number of rows

% Tests: does A satisfy the Cholesky hypotheses?
if m-=n

disp (’A_is_not_a_square_matrix’);

return
end

if A'~=A
disp (’A_is_not_symmetric’);
return

end

B=zeros (n,n);
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% Algorithm
for i=I1:n
sum B=sum(B(1:i—1,i).*B(1:i—1,i));
if A(i,i)—sum_B<0
disp (’A_is_not_positive—definite’);
return
else
B(i,i)=sqrt(A(i,i)-sum_B);
end
for j=i+1:n
sum B=sum(B(1:i—1,i).*B(1:i—1,j));
B(i,j)=(A(i,j)-sum_B)/B(i,i);
end
end

3. (a) A is obviously symmetric. To prove that A is positive-definite, we determine its eigenvalues
(Prop. 1.12). Due to the Sarrhus law for 3 x 3 determinants, we have

2-X -1 0
det(A-X3)=| -1 2-X -1 |=2-XP°-2-X)-2-X)
0 -1 2-X

—2-X)[2-X)2-21=2-X)(X?-4X+2)=2-X)(X-2-V2)(X -2+ V2).

The eigenvalues are 2 — /2, 2 and 2 + /2 which are all positive. We can thus apply the Cholesky
decomposition to A.

(b) According to the algorithm from Q. 2, we deduce that

V2 =L o0

ONIOJ§

4. The Cholesky decomposition helps solve linear systems when the underlying matrix is symmetric and
positive-definite. The corresponding algorithm is less expensive than standard algorithms for linear
systems.

5. Given b € R" and A € 4, (R) symmetric and positive-definite, we aim at solving Ax = b. To do so,
we use the Cholesky decomposition of A and notice that the linear system is equivalent to BT Bx = b
which can be decomposed into two triangular systems: BT y = b and then Bx = y. Hence:

Algorithm 1 Resolution of a symmetric linear system
1: Data: A€ ., (R) symmetric and positive-definite, b € R"

2: Compute B such that A=B” B > Use Algorithm from Q. 2
3: Solve the lower triangular linear system B” y = b > Alg. 1, p. 16 in the lecture notes
4: Solve the upper triangular linear system Bx = y > Alg. 2, p. 16 in the lecture notes
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