
EFREI – M1 IFM Numerical analysis applied to financial issues

Exam

Exercise 1 To approximate the solution to the ODE{
y ′(t ) = f

(
t , y(t )

)
, (1a)

y(0) = 2. (1b)

we propose to use the Adams-Moulton scheme

yn+2 − yn+1 =∆t

(
5

12
f (t n+2, yn+2)+ 2

3
f (t n+1, yn+1)− 1

12
f (t n , yn)

)
. (2)

1. (a) Scheme (2) is a 2-step scheme (see Definition 2.9 in the lecture notes) characterized by

α0 = 0, α1 =−1, α2 = 1, β0 = −1

12
, β1 = 2

3
and β2 = 5

12
.

According to Prop. 2.6, this scheme is consistant iff

2∑
k=0

αk = 0 and
2∑

k=0
kαk =

2∑
k=0

βk .

We easily check that

2∑
k=0

αk = 0−1+1 = 0 and
2∑

k=0
kαk = 0×0+1× (−1)+2×1 = 1 = −1

12
+ 2

3
+ 5

12
=

2∑
k=0

βk .

(b) The Dahlquist statement (Prop. 2.7) ensures that the scheme is stable if the polynomial ρ(x) =∑
0≤k≤2

αk xk has its roots in [−1,1] and roots of modulus 1 are simple. Here, we have ρ(x) = x2−x =
x(x −1) whose roots are 0 and 1. Hence the stability.

(c) Stability and consistency imply the convergence of the scheme due to the Lax–Richtmyer theorem
(Th. 2.2). The fact that a scheme is convergent means that if we denote by (yn) the numerical so-
lution and by ŷ the exact solution, then ŷ(t n)−yn goes to 0 as∆t goes to 0: the more∆t decreases,
the more accurate the numerical solution (close to the exact solution).

(d) We apply Prop. 2.8 and assess each i ≥ 2 until the relation in Prop. 2.8 is not satisfied:

• i = 2:
∑

0≤k≤2
k2αk = 0×0+1× (−1)+4×1 = 3 = 2

(
0× −1

12 +1× 2
3 +2× 5

12

) = 2
∑

0≤k≤2
kβk . The

scheme is at least of order 2.

• i = 3:
∑

0≤k≤2
k3αk = 0×0+1× (−1)+8×1 = 7 = 3

(
0× −1

12 +1× 2
3 +4× 5

12

)= 3
∑

0≤k≤2
k2βk . The

scheme is at least of order 3.

• i = 4:
∑

0≤k≤2
k4αk = 0×0+1×(−1)+16×1 = 15 6= 16 = 4

(
0× −1

12 +1× 2
3 +8× 5

12

)= 4
∑

0≤k≤2
k3βk .

The scheme is exactly of order 3.

(e) Judging from the definition t n = (n −1)∆t , we have t 1 = 0, t 2 =∆t and t N = 1, which is coherent
with the domain of study [0,1].

(f ) As Scheme (2) is a 2-step scheme, we need two initializing values (to compute y3, we need to
know y2 and y1).

(g) As y1 must be an approximation of ŷ(t 1) = ŷ(0) = 2 according to (1b), we choose y1 = 2 . We now

tackle the computation of y2 ≈ ŷ(t 2) = ŷ(∆t ) which we do not know. As Scheme (2) is of order 3,
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we must choose a value which is accurate at order 3, that is to say y2 = ŷ(∆t )+O (∆t 3). To do so,
we perform a Taylor expansion (Prop. 1.17):

ŷ(∆t ) = ŷ(0)+∆t ŷ ′(0)+ ∆t 2

2
ŷ ′′(0)+O (∆t 3).

ŷ ′(0) is deduce from ODE (1a) and from the initial condition (1b): ŷ ′(0) = f
(
0, ŷ(0)

) = f (0,2).
Likewise, to compute ŷ ′′(0), we differentiate ODE (1a) once to obtain by the chain rule

ŷ ′′(t ) = d

dt

[
f
(
t , ŷ(t )

)]= ∂ f

∂t

(
t , ŷ(t )

)+ ŷ ′(t )
∂ f

∂y

(
t , ŷ(t )

)= ∂ f

∂t

(
t , ŷ(t )

)+ f
(
t , ŷ(t )

)∂ f

∂y

(
t , ŷ(t )

)
.

Hence we set y2 = 2+∆t f (0,2)+ (
∂t f (0,2)+ f (0,2)∂y f (0,2)

)
∆t 2

2 .

(h) In Scheme (2), yn+2 is present in both sides of the equality. Thus, given yn and yn+1, it may not
be possible to compute yn+2. The scheme is implicit.

2. (a) In this particular case, ODE (1) reads {
y ′(t ) = y(t ), (3a)

y(0) = 2. (3b)

It is thus a 1st-order linear ODE with constant coefficients (see (2.2) in the lecture notes). The

exact solution ŷ is given by ŷ(t ) = 2e t .

(b) Scheme (2) applied to ODE (3a) is

yn+2 − yn+1 =∆t

(
5

12
yn+2 + 2

3
yn+1 − 1

12
yn

)
. (4)

(c) As stated in Q. 1(h), the Adams-Moulton scheme is implicit. It may not be possible to compute
yn . But in the linear case of Q. 2, (4) leads to(

1− 5∆t

12

)
yn+2 −

(
1+ 2∆t

3

)
yn+1 + ∆t

12
= 0. (5)

Provided that 1− 5∆t
12 6= 01 and ∆t

12 6= 0, relation (5) defines a 2nd-order linear induction with
constant coefficients (p. 10 in the lecture notes). It is characterized by

α= 2, β= 2

(
1+∆t + ∆t 2

2

)
, ζ= 1− 5∆t

12
, η=−1− 2∆t

3
and θ = ∆t

12
.

To compute yn , we study the characteric equation ζr 2 +ηr +θ = 0. Given that

∆= η2 −4ζθ = 1+∆t + 7

12
∆t 2 > 0,

we deduce that yn = κr n
1 +λr n

2 where κ and λ can be expressed from α and β.

(d) The 3rd-order Runge-Kutta scheme (see p. 27 in the lecture notes) applied to ODE (3a) reads

zn+1 = zn + ∆t

6
(k1 +4k2 +k3)

1Which is always the case since 1− 5∆t
12 6= 0 ⇐⇒ N 6= 5

12 +1 6∈N.
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with

k1 = f (t n , zn) = zn ,

k2 = f

(
t n + ∆t

2
, zn + ∆t

2
k1

)
= zn ×

(
1+ ∆t

2

)
,

k3 = f
(
t n+1, zn +∆t (2k2 −k1)

)= zn × (1+∆t +∆t 2).

Hence

zn+1 = zn ×
(
1+∆t + ∆t 2

2
+ ∆t 3

6

)
.

(e) The previous relation shows that (zn) is a geometric sequence (p. 10 in the lecture notes). We
deduce that

zn = z1

(
1+∆t + ∆t 2

2
+ ∆t 3

6

)n−1

= 2

(
1+∆t + ∆t 2

2
+ ∆t 3

6

)n−1

.

(f) Both Adams-Moulton and Runge-Kutta 3 (RK3) are 3rd-order accurate. However, in the gen-
eral case, the Adams-Moulton scheme is implicit (unlike RK3) which is more expensive from a
computational point of view. Thus RK3 seems preferable.

Exercise 2 1. The Cholesky decomposition (Prop. 1.9): If A ∈ Mn(R) is symmetric and positive-definite
(Def. 1.8 and Prop. 1.12), then there exists B ∈Mn(R) upper triangular such that A = B T B. Moreover,
there exists a unique B such that Bi i > 0 for all i ∈ {1, . . . ,n}.

2. To build the algorithm, we notice that

Ai j =
n∑

k=1
(B T )i k Bk j =

n∑
k=1

Bki Bk j =
min(i , j )∑

k=1
Bki Bk j

since B is upper triangular (which implies Bi j = 0 if i < j ). Hence we can compute components of B
row by row. The MATLAB function reads

function B=chol_yp (A)
% Compute the Cholesky decomposition
% of a symmetric p o s i t i v e−d e f i n i t e matrix A

n=length (A ( 1 , : ) ) ; % number of columns
m=length (A ( : , 1 ) ) ; % number of rows

% T e s t s : does A s a t i s f y the Cholesky hypotheses ?
i f m~=n

disp ( ’A i s not a square matrix ’ ) ;
return

end

i f A’~=A
disp ( ’A i s not symmetric ’ ) ;
return

end

B=zeros (n , n ) ;
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% Algorithm
for i =1:n

sum_B=sum(B ( 1 : i −1, i ) . * B ( 1 : i −1, i ) ) ;
i f A( i , i )−sum_B<0

disp ( ’A i s not p o s i t i v e−d e f i n i t e ’ ) ;
return

e l s e
B( i , i )= sqrt (A( i , i )−sum_B ) ;

end
for j = i +1:n

sum_B=sum(B ( 1 : i −1, i ) . * B ( 1 : i −1, j ) ) ;
B( i , j ) = (A( i , j )−sum_B ) / B( i , i ) ;

end
end

3. (a) A is obviously symmetric. To prove that A is positive-definite, we determine its eigenvalues
(Prop. 1.12). Due to the Sarrhus law for 3×3 determinants, we have

det(A−X I3) =
∣∣∣∣∣∣
2−X −1 0
−1 2−X −1
0 −1 2−X

∣∣∣∣∣∣= (2−X )3 − (2−X )− (2−X )

= (2−X )[(2−X )2 −2] = (2−X )(X 2 −4X +2) = (2−X )(X −2−p
2)(X −2+p

2).

The eigenvalues are 2−p
2, 2 and 2+p

2 which are all positive. We can thus apply the Cholesky
decomposition to A.

(b) According to the algorithm from Q. 2, we deduce that

B =


p

2 −1p
2

0

0
√

3
2 −

√
2
3

0 0 2p
3


4. The Cholesky decomposition helps solve linear systems when the underlying matrix is symmetric and

positive-definite. The corresponding algorithm is less expensive than standard algorithms for linear
systems.

5. Given b ∈ Rn and A ∈ Mn(R) symmetric and positive-definite, we aim at solving Ax = b. To do so,
we use the Cholesky decomposition of A and notice that the linear system is equivalent to B T B x = b
which can be decomposed into two triangular systems: B T y = b and then B x = y. Hence:

Algorithm 1 Resolution of a symmetric linear system

1: Data: A ∈Mn(R) symmetric and positive-definite, b ∈Rn

2: Compute B such that A = B T B . Use Algorithm from Q. 2
3: Solve the lower triangular linear system B T y = b . Alg. 1, p. 16 in the lecture notes
4: Solve the upper triangular linear system B x = y . Alg. 2, p. 16 in the lecture notes
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