
EFREI – M1 IFM Numerical analysis applied to financial issues

Exercise 1 Let (un) be the sequence defined by

u0 = 0, ∀ n ∈Z+, un+1 = un +2

4−un
.

Set vn = un−1
un−2 and f (x) = x+2

4−x .

1. Solve the equations f (x) = 1 and f (x) = 2.

2. Prove that if un < 1, then un+1 < 1. Deduce that the sequence (un) is well defined.

3. Show that (vn) is well defined and geometric. Deduce the expression of vn with respect to n.

4. Derive the expression of un with respect to n. What is the limit of (un)?

Exercise 2 Determine the expression of un solution of{
u0 = 0, u1 = 1,

un+1 =−un − 5
36 un−1, n ≥ 1.

Exercise 3 Write out the Cholesky algorithm. Determine the cost of the algorithm.

Exercise 4 Let Aα be the matrix

Aα =
 α 0 −1

0 α −1
−1 −1 α


parametrized by α ∈R.

1. Determine the eigenvalues of Aα and some corresponding eigenvectors.

2. For which values of α the matrix Aα is invertible?

3. (a) For which values of α the matrix Aα admits a Cholesky decomposition?

(b) For those values, compute the decomposition from the algorithm of Exercise 3.

(c) By means of an up-down algorithm, solve explicitly the linear system Aαx = b for some b ∈Rn .

(d) Deduce the expression of A−1
α .

(e) For a symmetric positive-definite matrix, the condition number of a matrix is the ratio of the
largest eigenvalue by the lowest one. Compute the condition number of Aα.

(f ) Which asymptotics upon α corresponds to the most suitable case for inverting Aα?

4. We assume in this question that α 6= 0. We aim at approximating the solution of Aαx = b by means
of an iterative method, which is the Jacobi method: writing Aα = Dα −E − F where Dα is the dia-
gional matrix whose coefficients are the diagonal entries of Aα, E is lower triangular and F is upper
triangular. The Jacobi method consists of the sequence Dαxn+1 = (E +F )xn +b.

(a) Write down the matrices Dα, E and F .

(b) For which values of α is the method convergent?

(c) What are the induction relations for xn
1 , xn

2 and xn
3 .

(d) Compute the expression of xn with respect to n.

(e) What is the limit of xn as n goes to ∞? Comment.
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Exercise 5 Give the solutions to the following ODEs:

ŷ ′(t ) = 2ŷ(t )+1; ŷ ′(t ) = t

t 2 +1
ŷ(t ); ŷ ′(t ) =−(tan t )ŷ(t )+cos t ; t ŷ ′(t ) =−ŷ(t )+ t ,

supplemented with the initial condition ŷ(t0) = y0. Specify for which t0 such solutions exist.

Exercise 6 1. Determine the solutions to the second-order ODE

y ′′(t )−2y ′(t )+ y(t ) = 0.

2. We then focus on the ODE 
y ′′(t )−2y ′(t )+ y(t ) = cos t ,

y(0) = 0,

y ′(0) = 1.

(1)

(a) Prove that there exists a unique solution to (1).

(b) What are the eigenvalues of the corresponding matrix?

(c) Determine C such that y(t ) =C (t )e t satisfies (1).

(d) Conclude.

Exercise 7 We consider the ordinary differential equation

(t 2 +1)ŷ ′(t )+ t = t ŷ(t )2. (2)

1. Prove the existence of a solution to (2) defined for t ∈R.

2. Determine a constant solution to (2).

3. Set ẑ = ŷ −1. Show that ẑ satisfies

(t 2 +1)ẑ ′(t ) = t
(
2ẑ(t )+ ẑ2(t )

)
. (3)

4. Set ŵ = 1
ẑ . Determine the equation satisfied by ŵ and solve (2).

5. Apply the explicit and implicit Euler schemes to (2).

Exercise 8 These equations model the evolution of an isolated predator-prey system (for instance rabbits
and lynx): {

x ′(t ) = x(t )
(
3− y(t )

)
, x(0) = 1,

y ′(t ) = y(t )
(
x(t )−2

)
, y(0) = 2.

(4)

1. Determine which variable corresponds to the number of preys.

2. Show that there is no constant solution to Problem (4).

3. Rewrite Eqs. (4) as Y′(t ) = F
(
Y(t )

)
, where Y =

(
x
y

)
. Deduce that there exists a unique maximal solution

Y.

4. Prove that x and y cannot vanish. Deduce the sign of each unknown.

5. We set H(x, y) = x−2ln x+ y −3ln y. H is called the Hamiltonian of the system. Show that for all t ≥ 0,
H

(
x(t ), y(t )

)= H
(
x(0), y(0)

)
.
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6. Apply the explicit Euler scheme to Eq. (4). Is the numerical Hamiltonian also constant?

7. We introduce the symplectic Euler scheme:{
xn+1 = xn +∆t xn+1(3− yn),

yn+1 = yn +∆t yn(xn+1 −2).

Prove this scheme is consistant.

In the sequel, f : [0,1]×R 7−→ R denotes a smooth function of class C 1. We aim at approximating the
solution of the ODE

ŷ ′(t ) = f
(
t , ŷ(t )

)
. (5)

Let T be some positive number and N ∈Z+, N 6= 0. Then we set ∆t = T
N and t n = n∆t , 0 ≤ n ≤ N .

Exercise 9 We assume in this exercise that f (t , y) =−y.

1. Solve (5) in this case supplemented with the initial condition ŷ(0) = 1.

2. Apply the explicit Euler scheme to construct the sequence (yn).

3. Yield the explicit expression of yn with respect to n and ∆t . Is the scheme relevant for any ∆t?

4. Compare yN and ŷ(T ). Conclude.

5. Follow the same directions about the Heun scheme.

6. Which scheme seems to be the most efficient?

Exercise 10 We take in this exercise f (t , y) = 1−2y.

1. Solve (5) in this case supplemented with the initial condition ŷ(0) = 1.

2. Apply the implicit Euler scheme to construct the sequence (yn).

3. Yield the explicit expression of yn with respect to n and ∆t .

Exercise 11 To provide an approximate solution to (5), we propose the scheme

3yn+2 −4yn+1 + yn

2
=∆t f (t n+2, yn+2).

1. How can this scheme be initialized?

2. Show that the scheme is convergent. Determine its order.

3. Is this scheme explicit?

4. In the case f (t , y) =−y, solve the linear inductive relation for yn .

5. Propose a modification of the right hand side in the previous scheme to improve the order.
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Exercise 12 The enhanced Euler scheme reads

yn+1 = yn +∆t f

(
t n + ∆t

2
, yn + ∆t

2
f (t n , yn)

)
.

1. Compute ŷ ′′(t ) for ŷ solution of (5).

2. Show this scheme is convergent and determine its order.

Exercise 13 We aim at studying a numerical scheme dedicated to the resolution of the autonomous ordinary
differential equation {

y ′(t ) = f
(
y(t )

)
, (6a)

y(0) = y0, (6b)

where f :R−→R is a C∞ function. We consider the lintrap scheme

yn+1 − yn

∆t
= f (yn)+ f ′(yn)

yn+1 − yn

2
(7)

where ∆t > 0 is some positive number and we set t n = n∆t , n ≥ 0.

1. Does there exist a unique solution to ODE (6)?

2. Study of the numerical scheme

(a) Is the scheme explicit or implicit?

(b) Is the scheme well-defined in any case? Show that if f is monotone-decreasing, then the scheme
is well-defined.

(c) For ŷ solution to (6), compute ŷ ′′(t ).

(d) Prove that (7) is a consistant scheme up to order 2.

3. Investigation of a particular case. We suppose in this question that f (y) = (y +1)2.

(a) Compute the exact solution ŷ to (6) in that case.

(b) Apply Scheme (7) to ODE (6). Express yn+1 as a function of ∆t and yn .

(c) Let us introduce zn = 1
yn+1 . Show that (zn) satifies an arithmetic progression.

(d) Deduce the expression of yn with respect to n and ∆t .

(e) Compare yn and ŷ(t n). Conclude.

Exercise 14 Let us consider the system {
x ′(t ) = y(t ), x(0) = 1,

y ′(t ) =−x(t ), y(0) = 0.
(8)

1. Prove that the trajectories t 7−→ (
x(t ), y(t )

)
are included in the unit circle x2 + y2 = 1.

2. Write out the explicit Euler scheme, the implicit Euler scheme and the Crank-Nicholson scheme for the
resolution of (8).

3. Do these schemes preserve the trajectories?
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Exercise 15 Let us consider the ODE {
ŷ ′(t )+3ŷ(t )2 = 0,

ŷ(0) = 1.
(9)

1. Solve (9). What is the limit of ŷ(t ) as t →+∞?

2. Apply the explicit Euler scheme to this ODE and study the limit as n →+∞.

3. We propose the following scheme

yn+1 − yn

∆t
+3

( yn+1 + yn

2

)2
= 0. (10)

(a) Derive an expression of yn+1 with respect to yn and deduce a condition upon ∆t for the limit to
be correct as n →+∞.

(b) Show this scheme is consistant at order 2.

Exercise 16 Let us consider the following differential equation

−u′′(x)+u′(x)+
(
α2 − 1

4

)
u(x) = f (x), (11)

where α> 0 is some real number and f is a continuous function over R+. To supplement Equation (11), we
propose two types of boundary conditions:

u(0) = 0, u′(0) = 1, (BC1)

u(0) = 0, u(1) = 2. (BC2)

1. We assume in this question ONLY that f (x) = 0 for all x ≥ 0.

(a) Compute the expression of the solution to (11) together with (BC1).

(b) What is the solution for (BC2)?

2. General case.

(a) Prove that there exists a unique solution to Equation (11) (for some given f ) supplemented with
(BC1).

(b) What can we say about the problem (11)–(BC2)?

(c) Let us set

∀ x ≥ 0, û(x) = e( 1
2+α)x

(
c0 − 1

2α

∫ x

0
f (y)e−( 1

2+α)y dy

)
+e( 1

2−α)x
(
d0 + 1

2α

∫ x

0
f (y)e−( 1

2−α)y dy

)
.

Show that û satisfies (11).

(d) Determine (c0,d0) so that û also satisfies (BC1). Same question for (BC2).

(e) Is this expression for û always useful?

3. Numerical approach. Let us set ∆x = 1
N−1 for some integer N ≥ 2 and xi = (i −1)∆x for i ∈ {1, . . . , N }.

In this section, we are interested in designing a numerical scheme to provide approximations ui of
û(xi ).

(a) Propose a finite-difference scheme to approximate the solution to (11).

(b) How to take (BC1) into account? Write out the corresponding algorithm to compute ui for all
i ∈ {1, . . . , N }.
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(c) Same question for (BC2). What can you say about the matrix of the underlying linear system?

4. Substitution. Let v be the function such that u(x) = v(x)ex/2.

(a) Prove that v is a solution of the following equation

−v ′′(x)+α2v(x) = f (x)e−x/2. (12)

(b) What are the boundary conditions for v corresponding to (BC2)?

(c) Propose a finite-difference numerical scheme to solve (12)–(BC2). Does this seem more practical
than in Question 3.(c)?

(d) We admit that the Cholesky factorization of a tridiagonal matrix A ∈Mn(R) is B T B where B is a
bidiagonal upper matrix of the form

√
β1 γ2 0 0

0
. . .

. . . 0
...

. . .
. . . γn−1

0 · · · 0
√
βn


Adapt the Cholesky algorithm to the factorization of the matrix of Question 4.(c). In particular,
show that (βi ) satisfies the inductive relation

βi + 1

βi−1
= 2+α2∆x2, β1 = 2+α2∆x2.

What is γi equal to?

Exercise 17 We aim at solving the autonomous ( i.e. f does not depend on t) ordinary differential equation{
y ′(t ) = f

(
y(t )

)
,

y(0) = 1
2 .

(13)

We assume that f is of class C 2(R).

1. Justify that ODE (13) has a unique equation denoted ŷ. What is the regularity of ŷ?

2. Give the expression of the solution in the following cases:

(a) f (x) = 1;

(b) f (x) =λx with λ ∈R.

3. In the general case, we cannot provide an explicit expression. That is why we aim at constructing
approximate values of the solution at some points. More precisely, we set

t n = n∆t , ∆t = 3

N
,

for some fixed integer N ≥ 1. A numerical scheme is a method whose purpose is to compute yn which
is an approximation of ŷ(t n).

(a) Do we have yn = ŷ(t n)?

(b) i. Apply the explicit Euler scheme to ODE (13). Express yn+1 as a function of yn .

ii. How many values do we need in order to initialize the sequence (yn)?
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iii. Write out the algorithm leading to the computation of the sequence (yn).

iv. Recall the order of this scheme.

(c) We are interesting in the multi-step scheme

zn+3 − zn+1 =∆t

(
7

3
f (zn+2)− 2

3
f (zn+1)+ 1

3
f (zn)

)
. (14)

i. Prove the consistency of Scheme (14).

ii. Study its stability.

iii. Deduce that this scheme is convergent.

iv. Is this scheme explicit or implicit? Justify your answer.

v. Determine the order of Scheme (14).

vi. How many values do we need in order to initialize the sequence (zn)? Explain how to com-
pute these initiliazing values.

vii. Write out the algorithm leading to the computation of the sequence (zn).

viii. Which scheme would you recommend: Euler (Q. 3.(b)) or Scheme (14)?

ix. Apply Scheme (14) when f (x) = 1. Compute the exact expression of zn for all n.

Exercise 18 We focus in this exercise on the ordinary differential equation
x ′

1(t ) =−x1(t )−x1(t )x2(t ), x1(0) = 1

3
,

x ′
2(t ) =−x2(t )

x1(t )
, x2(0) = 2

3
.

(15)

We set F (x, y) =
(−x −x y

− y
x

)
and X (t ) =

(
x1(t )
x2(t )

)
.

1. Rewrite ODE (15) by means of X and F .

2. Does there exist a solution to ODE (15)?

3. Is it possible to provide an explicit expression of the solution?

4. Let ∆t > 0 be such that ∆t < 1

2
. We propose the numerical scheme

xn+1
1 −xn

1

∆t
=−xn

1 −xn
1 xn+1

2 , x0
1 = 1

3
,

xn+1
2 −xn

2

∆t
=−xn+1

2

xn
1

, x0
2 = 2

3
.

(16)

(a) Show by induction that the sequences (xn
1 ) and (xn

2 ) belong to (0,1) and are monotone-decreasing.

(b) Deduce that they are convergent. Determine their limits.

(c) Is Scheme (16) explicit?

(d) Express xn+1
1 and xn+1

2 as functions of xn
1 , xn

2 and ∆t . Deduce that this one-step scheme is con-
sistant.

Exercise 19 We now study the pure advection equation
∂t Y (t , x)+α∂x Y (t , x) = 0, x ∈ (0,1),

Y (t ,0) = 0,

Y (0, x) = Y0(x),

(17)

with the same assumptions for α and Y0 as in the previous exercise.
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1. Let Y1 and Y2 be two smooth solutions of PDE (17). Show that Y1 = Y2 by using

E(t ) =
∫ 1

0
|Y1(t , x)−Y2(t , x)|2 dx.

2. Deduce that function Ŷ defined by

Ŷ (t , x) =
{

Y0(x −αt ), if x −αt ≥ 0,

0, otherwise,

is the unique smooth solution of (17).

3. We now aim at studying numerical schemes simulating PDE (17). To do so, let us introduce Nx ≥ 2 an
integer and ∆t > 0 a real number. We then set

∆x = 1

Nx −1
, xi = (i −1)∆x, 1 ≤ i ≤ Nx , and t n = (n −1)∆t , n ≥ 1.

We propose the following schemes

Y n+1
i −Y n

i

∆t
+αY n

i −Y n
i−1

∆x
= 0, (18)

Y n+1
i −Y n

i

∆t
+αY n+1

i −Y n+1
i−1

∆x
= 0. (19)

(a) Upwind scheme (18): write out the algorithm corresponding to the computation of Y n
i for all

i ∈ {1, . . . , Nx } and n ≥ 1.

(b) Upwind scheme (18): show that this scheme is consistant and using Exercise 20, derive a stability
condition.

(c) Implicit scheme (19): write out the corresponding algorithm. Does it require the resolution of a
linear system?

Exercise 20 Let us study the 1D advection–diffusion equation
∂t Y (t , x)+α∂x Y (t , x)−ν∂2

xx Y (t , x) = 0, x ∈ (0,1),

Y (t ,0) = Y (t ,1) = 0,

Y (0, x) = Y0(x),

(20)

for some constant velocity field α > 0 and constant diffusion coefficient ν 6= 0. The initial datum Y0 is as-
sumed to be smooth.

1. Propose a discretization of (20) inspired by the previous implicit scheme. Does it require the resolution
of a linear system? If so, what can you say about the matrix?

2. Let us set Z (t , x) = Y (t , x)exp
[−α

4ν
(2x −αt )

]
. Show that Z satisfies the following PDE

∂t Z −ν∂2
xx Z = 0 (21)

with suitable initial and boundary conditions. Do you think it is more relevant to discretize the equiv-
alent equation (21)?
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