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Chapter 1

Introduction

1.1 Numerical analysis

That numerical analysis is both a science and an art is a cliché to specialists in the field

but is misunderstood by nonspecialists. Is calling it an art and a science only a euphemism

to hide the fact that numerical analysis is not a sufficiently precise discipline to merit being

called a science? Is it true that “numerical analysis” is something of a misnomer because the

classical meaning of analysis in mathematics is not applicable to numerical work? In fact, the

answer to both these questions is no. The juxtaposition of science and art is due instead to an

uncertainty principle which often occurs in solving problems, namely that to determine the

best way to solve a problem may require the solution of the problem itself. In other cases, the

best way to solve a problem may depend upon a knowledge of the properties of the functions

involved which is unobtainable either theoretically or practically. [. . . ]

As a science, then, numerical analysis is concerned with the processes by which mathemat-

ical problems can be solved by the operations of arithmetic. Sometimes this will involve the

development of algorithms to solve a problem already in a form in which the solution can be

found by arithmetic means, e.g. simultaneous linear equations. Often it will involve replacing

quantites which cannot be calculated arithmetically, e.g. derivatives or integrals, by approx-

imations which permit an approximate solution to be found. In this case, we shall naturally

be interested in the errors incurred in our approximation. But in any case, the tools we shall

use in developing the processes of numerical analysis will be the tools of exact mathematical

analysis as classically understood.

As an art, numerical analysis is concerned with choosing that procedure (and suitably ap-

plying it) which is the “best” suited to the solution of a particular problem. This implies the

need for anyone who wishes to practice numerical analysis to develop experience and with it

– it is hoped – intuition.

in A First Course in Numerical Analysis, A. Ralston & P. Rabinowitz
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6 CHAPTER 1. INTRODUCTION

As written by Ralston & Rabinowitz, Numerical Analysis is an answer to several users of mathematics. It

helps provide an approximate solution to problems for which one is not able to exhibit an exact solution.

Indeed, many systems of equations arising in physical, chemical, biological modelling may not have a

“trivial” solution.

The main tools of numerical analysis are finite-dimensional linear systems, sequences and polyno-

mials, which seem to be more practical than differential equations and functions. Operations with these

former elements are purely arithmetic and thus achievable. The art of numerical analysis consists in for-

mulating a new problem involving these practical tools and at the same time in controlling the error in-

duced by the choice of this “nearby” problem.

The development of computers over the last decades increased the significance and the impact of nu-

merical analysis. The high speed at which linear operations can be done indeed made this discipline very

attractive. The fact remains that the error between the true1 and the numerical solutions must be con-

trolled, which leads to a characteristic issue: to improve the accuracy of the solution (i.e. by decreasing the

error), sophisticated methods must be developed but they induce a (maybe much) larger computational

time. The equilibrium between accuracy and efficiency is thus a major issue and the answer varies from

one numerical analyst to another. It depends on what they want to focus on: either the overall behaviour

of the solution or the very values of the solution at some points.

A critical concept in numerical analysis is stability. More precisely, the question deals with the fact

that a numerical method which provides good results for an equation may turn to be not suited to a very

close but different equation. This close problem could be the same equation but with a small perturbation

on the boundary conditions. This can be due to the method (see below) . . . or to the problem itself. In the

latter case, the problem is said to be ill-posed as it is very sensitive to perturbations on data. A classical

example is the Cauchy problem 
y ′′− y ′−2y = 0,

y(0) = 1,

y ′(0) =−1,

whose solution is y(t ) = e−t which has a fast decay as t goes to infinity. If we modify (for some ε > 0) the

initial condition as 
ỹ ′′− ỹ ′−2ỹ = 0,

ỹ(0) = 1,

ỹ ′(0) =−1+ε,

the solution becomes ỹ(t ) = (
1− ε

3

)
e−t + ε

3 e2t . Hence for ε = 10−3, we have y(10) ≈ 0.000045 and ỹ(10) ≈
7.34. This is the kind of instability that must be taken into account. Likewise, the numerical scheme must

be stable in order to provide reliable results.

1The reader should bear in mind that any model aims at representing real life but cannot reproduce the whole complexity of
reality. We may incur a large discrepancy compared to experiments. Modelling issues will not be investigated in this course.
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1.2 Deterministic approach of finance

1.2.1 Model

Let us set in this section the model we shall simulate in this course, namely the Black & Scholes equation.

This equation models the evolution of the price of a financial option (put for a selling option, call for a

buying option). More precisely:

An option is a contract giving the owner the right to buy [or sell] a fixed number of share of a

specific common stock at a fixed price at a certain date.

in Option Market, J. Cox & M. Rubinstein

The underlying asset is denoted by S. Its evolution is governed by another model which is not the topic

of this course. The fixed price is called the strike and denoted by K . The date of expiration of the option is

called the maturity and denoted by T . The very issue is to evaluate the price V of the option, especially at

time 0. Indeed, the part of the option who commited to sell [or buy] the shares to the owner of the option

must ensure that they would not loose money. That is why they have to adapt the fee which is the price

of the contract. They do not know what the price of the underlying will be in the future. However, it is

possible to evaluate the value of the option at maturity:

• For a call option, if the value ST of the underlying at time T is greater than the strike, the owner

exercises the option and buys the underlying at price K . Otherwise, the owner buys the asset at the

market price and do not exercise. Hence, the price of the option is

C (T ,ST ) = max{ST −K ,0}. (1.1a)

• For a put option, the price becomes

P (T ,ST ) = max{K −ST ,0}. (1.1b)

Under financial hypotheses (like the fact that the market rules out arbitrage) about which we shall not go

into details, the Black & Scholes model for pricing options reads
∂V

∂t
+ σ(t ,S)2S2

2

∂2V

∂S2 + r (t )S
∂V

∂S
− r (t )V = 0, t ∈ (0,T ), S ≥ 0, (1.2a)

V (T ,S) =VT (S), S ≥ 0. (1.2b)

r is the interest rate, σ is the volatility and VT (S) is the payoff given by (1.1a) or (1.1b). Notice that the

prices for call and put options are related by the call–put parity formula

C (t ,S)−P (t ,S) = S −K exp

(
−

∫ T

t
r (τ) dτ

)
. (1.3)
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System (1.2) must be supplemented with boundary conditions in the “asset” domain (0,+∞). First, if the

model is reasonable, we must have C (t ,S) ≤ S, which implies

C (t ,0) = 0. (1.4a)

The call–put parity formula (1.3) leads to

P (t ,0) = K exp

(
−

∫ T

t
r (τ) dτ

)
. (1.4b)

Likewise, we must have

P (t ,S) −−−−−→
S→+∞

0, (1.4c)

and thus

C (t ,S) ∼
S→+∞

S −K exp

(
−

∫ T

t
r (τ) dτ

)
. (1.4d)

1.2.2 Simple case

When r andσ are assumed to be constant and equal to r0 andσ0, it is possible to derive explicit expressions

for C and P . Indeed, through successive change of variables, equation (1.2a) comes down to the heat

equation.

The first change of variables deals with the time reversal in order to make the terminal condition an

initial condition. Set Ṽ (θ,S) =V (T −θ,S). The equation becomes
−∂Ṽ

∂θ
+ σ2

0S2

2

∂2Ṽ

∂S2 + r0S
∂Ṽ

∂S
− r0Ṽ = 0, θ ∈ (0,T ), S ≥ 0,

Ṽ (0,S) =VT (S), S ≥ 0.

(1.5)

The next change of variables must lead to a PDE with constant coefficients, namely ϕ(θ, x) = Ṽ (θ,ex ) and

the equation reads 
−∂ϕ
∂θ

+ σ2
0

2

∂2ϕ

∂x2 +
(

r0 −
σ2

0

2

)
∂ϕ

∂x
− r0ϕ= 0, θ ∈ (0,T ), x ∈R,

ϕ(0, x) =VT (ex ), x ∈R.

(1.6)

The last one ψ(θ, x) =ϕ(θ, x)e−aθ−bx with b = 1
2 − r0

σ2
0

and a =−r0 − σ2
0

2 b2 leads to the heat equation


−∂ψ
∂θ

+ σ2
0

2

∂2ψ

∂x2 = 0, θ ∈ (0,T ), x ∈R,

ψ(0, x) =VT (ex )e−bx , x ∈R.

(1.7)

The solution to (1.7) is

ψ(θ, x) = 1√
2πσ2

0θ

∫
R

exp

[
−y2

2σ2
0θ

]
ψ(0, x − y) dy.
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Hence

V (t ,S) = ea(T −t )√
2πσ2

0(T − t )

∫
R

exp

[
by − y2

2σ2
0(T − t )

]
VT (Se−y ) dy.

We deduce the Black & Scholes formulae C (t ,S) = SΨ(d1)−K e−r0(T −t )Ψ(d2), (1.8a)

P (t ,S) =−SΨ(−d1)+K e−r0(T −t )Ψ(−d2), (1.8b)

with

Ψ(d) = 1p
2π

∫ d

−∞
e−x2

dx, d1 =
lnS − lnK +

(
r0 + σ2

0
2

)
(T − t )

σ0
p

T − t
, d2 = d1 −σ0

p
T − t .

Hence, in this simple case, we have an explicit solution but it may not seem practical due to its expression.

In more realistic (and thus more complex) situations, we do not have any solution. That is why methods

should be worked out to provide approximations of the solutions. It will be the matter in the following

chapters.

The only statement about (1.2) is the following existence result:

Theorem 1.1 Under the following hypotheses, (1.2) has a unique solution V ∈ C 0
(
[0,T ]×R+

)
which is of

class C 1 with respect to t and C 2 with respect to S:

• ∃C1 > 0, ∀ t ∈ [0,T ], ∀ (S1,S2) ∈R2+, |S1σ(t ,S1)−S2σ(t ,S2)| ≤C1|S1 −S2|;

• ∃C3 >C2 > 0, ∀ (t ,S) ∈ [0,T ]×R+, C2 ≤σ(t ,S) ≤C3;

• ∃C4 > 0, ∀ (t1, t2) ∈ [0,T ]2, |r (t1)− r (t2)| ≤C3|t1 − t2|;

• ∃C6 >C5 > 0, ∀ t ∈ [0,T ], C5 ≤ r (t ) ≤C6;

• ∃C7 > 0, ∀ S ∈R+, 0 ≤VT (S) ≤C7(1+S).

1.3 Mathematical tools

We end this introduction by some reminders about tools that are often involved in numerical analysis.

1.3.1 Sequences

Sequences are a practical tool that may either be calculated directly or by means of a fast computation.

Indeed, rather than manipulating a function, it seems easier to deal with countable sets of values of this

function. A sequence (yn)n≥1 is an ordered set of numbers, i.e. each element of the set is labelled by an

index n. Sequences may be of two types:

• “Explicit” insofar as it is directly possible to compute any value of the sequence, e.g. y100. For in-

stance, if the sequence is defined by yn = 3n2 +1, then y100 = 30001;

• “Inductive”: to compute y100, it is necessary to compute y99 before, and so on till y2. It is the case for

example of the sequence defined by y1 = 4 and yn+1 = 3y2
n +1, n ≥ 1: y100 is not directly achievable.
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Nethertheless, some of them belong a priori to the second category but turn out to be explicit:

• Arithmetic progressions defined by the induction

y1 =α, yn+1 = yn +β, n ≥ 1

for some fixed (α,β) ∈R2. Then we have

yn =α+ (n −1)β.

• Geometric progressions defined by the induction

y1 =α, yn+1 = γ× yn , n ≥ 1

for some fixed (α,γ) ∈R2. Then we have

yn =α×γn−1.

• Arithmetico-geometric progressions defined by the induction

y1 =α, yn+1 = δ× yn +ε, n ≥ 1

for some fixed (α,ε) ∈R2 and δ 6= 1. Then we have

yn =
(
α+ ε

δ−1

)
δn−1 − ε

δ−1
.

• Rational progession defined by the induction

y1 =α, yn+1 = δyn +ε
ηyn +ζ , n ≥ 1

for some real coefficients α, δ, ε, η, ζ such that η 6= 0 and δζ 6= εη. We must first ensure that yn 6= −ζ
η

for all n so that the sequence is well-defined. Then, we determine the solutions to the characteristic

equation

η`2 + (ζ−δ)`−ε= 0.

If there are exactly two solutions `1 and `2, then the sequence zn = yn−`1

yn−`2
is geometric. If there is a

unique solution `0, then zn = 1
yn−`0

is arithmetic.

• 2nd–order linear inductions with constant coefficients defined by

y1 =α, y2 =β, ζ× yn+2 +η× yn+1 +θ× yn = 0, n ≥ 1

for some fixed (α,β,η,θ) ∈R4 and ζ 6= 0.
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Let us set ∆= η2 −4ζθ which is the discriminant of the characteristic equation2

ζr 2 +ηr +θ = 0. (1.9)

The solution depends on the sign of ∆:

¦ If ∆> 0, (1.9) has two real solutions r1 and r2, and the sequence reads

yn = κr n
1 +λr n

2 ,

where κ and λ are deduced from α and β.

¦ If ∆= 0, (1.9) has one real solution r0 and the sequence reads

yn = (κ+λn)r n
0 .

¦ If ∆< 0, (1.9) has two complex solutions r1 and r1, and the sequence reads

yn = |r1|n
(
κcos(n Argr1)+λsin(n Argr1)

)
.

The general first-order inductive case reads

yn+1 = f (yn), n ≥ 1 with y1 given

where f is a continuous function over a certain interval I ⊂R. The outline of the study is

1. Examine the existence of an interval J ⊆ I such that f (y) ∈ J for all y ∈ J : it is necessary for the

sequence to be well-defined;

2. Calculate the potential fixed points of f , i.e. such that f (y) = y . If the sequence converges, the limit

is necessary a fixed point of f ;

3. Determine the monotonicity of f :

(a) If f is monotone-increasing, then the sequence (yn) is monotonic. If f (y1) > y1, then (yn) is

monotone-increasing. If f (y1) < y1, it is decreasing.

(b) If f is monotone-decreasing, then the subsequences (y2n) and (y2n+1) are monotonic.

A useful result states that:

Proposition 1.1 If a sequence is monotone-increasing and bounded, then it is convergent.

1.3.2 Polynomials

Polynomials are the simplest functions in functional analysis insofar as they can be represented by a finite

number of coefficients and as they are continuous and differentiable everywhere. That is why they are

used as often as possible to approximate functions (see § 1.3.4).

2This equation arises when looking for sequences of the form yn = r n .



12 CHAPTER 1. INTRODUCTION

Usual definitions A polynomial is a combination of powers of the unknown, i.e. of the form

P =
n∑

k=0
ak X k

for some n ∈Z+ (such that an 6= 0) and which is called the degree of P . All coefficients (ak ) are assumed to

be complex.

Definition 1.1 A root of P is a complex number ξ such that P (ξ) = 0.

Definition 1.2 The derivative of polynomial P is the polynomial P ′ =
n−1∑
k=0

ak+1(k +1)X k .

Definition 1.3 A root ξ of polynomial P is said to be of multiplicity m ∈ {1, . . . ,n} if P (ξ) = 0, P ′(ξ) = 0, . . . ,

P (m−1)(ξ) = 0.

Definition 1.4 Polynomial Q is said to divise P if there exists a polynomial R such that P =QR.

Common properties

Proposition 1.2 ξ is a root of polynomial P if X −ξ divises P. Its multiplicity is m if (X −ξ)m divises P.

Theorem 1.2 Every polynomial of degree n has exactly n complex roots. In other words, there exist (ξ1, . . . ,ξr ) ∈
Cr and (m1, . . . ,mr ) ∈Zr+ such that

r∑
k=1

mk = n and P = an

r∏
k=1

(X −ξk )mk .

Corollary 1.1 The product of the roots of P is equal to
r∏

k=1
ξ

mk

k = (−1)n a0

an
. Their sum is

r∑
k=1

mkξk =−an−1

an
.

1.3.3 Linear algebra

In many cases, the numerical resolution of an ODE or a PDE amounts to solving a linear system. We recall

in the sequel some definitions and results about matrices.3

Linear mappings

A linear mapping f : E → F (where E and F are two C-vector spaces) is a function satisfying the property

∀ (x, y) ∈ E 2, ∀λ ∈C, f (x +λy) = f (x)+λ f (y).

When E and F have finite dimensions n and p respectively, f can be represented in certain bases by a

matrix with p rows and n columns.

For example, the linear system 2x +3y +4z = 1,

x −2z = 0,

3We only deal with square matrices, which corresponds to the case where there are as many equations as unknowns.
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can be interpreted as the functional equation

f (X ) = Y

where X =


x

y

z

, Y =
(

1

0

)
and f (X ) =

(
2x +3y +4z

x −2z

)
or as the linear system

AX = Y

where

A =
(

2 3 4

1 0 −2

)
.

The number of rows corresponds to the number of equations and the number of columns to the number

of unknowns.

The issue is then to determine whether this linear system has a unique solution. In the sequel, we shall

only focus on the square case n = p, i.e. when there are as many equations as unknowns. Solving a linear

system comes down to studying the corresponding matrix.

Matrices

The set of square matrices with n rows, n columns and complex coefficients is denoted by Mn(C). A coef-

ficient of a matrix A ∈Mn(C) located at row i and column j is referred to as Ai j where (i , j ) ∈ {1, . . . ,n}.

Standard operations with matrices are

• the addition: [A+B ]i j = Ai j +Bi j (addition term by term);

• the multiplication by a scalar λ ∈C: [λA]i j =λAi j ;

• the matrix multiplication: [AB ]i j = ∑n
k=1 Ai k Bk j . The multiplication is not commutative: generally,

AB 6= B A;

• the transpose operation: [AT ]i j = A j i . Notice that [AB ]T = B T AT .

We note In the matrix whose coefficients are δi j =
1 if i = j ,

0 if i 6= j .

We finally introduce the determinant which is a linear form upon matrix spaces and which determines

wether the column vectors of the matrix are linearly dependent (in that case, det(A) = 0). Notice that

det(AB) = det(A)det(B) and det(λA) =λn det(A).

We then tackle the issue of the resolution of the linear system Ax = b for a given matrix A ∈Mn(C) and

a given vector b ∈Cn . The number of solutions (0, 1 or ∞) depends on the invertibility of A.

Definition 1.5 A matrix A ∈ Mn(C) is invertible if there exists a matrix B such that AB = In . The set of

invertible matrices is noted GLn(C).
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Proposition 1.3 If A and B are invertible, then AB is invertible and [AB ]−1 = B−1 A−1.

Definition 1.6 The kernel of A is the set

ker A = {x ∈Cn | Ax = 0}.

Looking for a vector x such that Ax = 0 amounts to looking for a linear combination such that
∑n

i=1 xi Ai = 0

where Ai is the i -th column vector of A.

Definition 1.7 The image of A is the set

Im(A) = {y ∈Cn | ∃ x ∈Cn , y = Ax}.

Then, the linear system Ax = b has

• 1 solution if A is invertible;

• 0 solution if A is not invertible and if b 6∈ Im(A): two (at least) equations are contradictory;

• infinitely many solutions if A is not invertible and if b ∈ Im(A): two (at least) equations are redun-

dant.

Proposition 1.4 A is invertible iff one of the following statements holds:

• ker A = {0};

• Im(A) =Cn ;

• There exists no linear combination of the column vectors of A equal to 0;

• det(A) 6= 0.

Classification

The simplest matrices are diagonal, i.e. such that Ai j = 0 for i 6= j . The set of diagonal matrices is noted

Dn(C).

Proposition 1.5 Let A and B be two diagonal matrices.

• A is invertible iff Ai i 6= 0 for all i ∈ {1, . . . ,n}. Its inverse is also diagonal and (A−1)i i = 1
Ai i

;

• AB = B A is a diagonal matrix whose diagonal coefficients are (AB)i i = Ai i Bi i ;

• If A is invertible, then for all b ∈Cn , the solution to Ax = b is given by xi = bi
Ai i

.

Another kind of simple matrices is the case of triangular systems, i.e. when Ai j = 0 for i < j (upper,

T +
n (C)) or i > j (lower, T −

n (C)).

Proposition 1.6 Let A and B be two lower triangular matrices.
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• A is invertible iff Ai i 6= 0 for all i ∈ {1, . . . ,n}. Its inverse is also lower triangular;

• AB is a lower triangular matrix;

• If A is invertible, then for all b ∈Cn , the solution to Ax = b is unique and given by Algorithm 1.

This proposition naturally adapts to the case of upper triangular matrices and the corresponding algorithm

is Algorithm 2.

We may also mention the following kinds of matrices:

Definition 1.8 Matrix A is said to be

• orthogonal if AT A =In and unitary if A
T

A =In ;

• symmetric if AT = A and hermitian if A
T = A;

• positive-definite if for all x ∈Cn , x 6= 0, xT Ax > 0.

Decompositions

A famous procedure to solve the linear system Ax = b where A is invertible is the Gaussian elimination.

If the process is successful without permutation, then A can be decomposed as LU where L ∈ T −
n (C) and

U ∈T +
n (C). Hence, the resolution of Ax = b can be split into 3 parts:

1. Compute L and U ;

2. Resolution of the lower triangular system Ly = b;

3. Resolution of the upper triangular system Ux = y .

Algorithm 3 relies on the blockwise product
L(p) 0 0

L (p) 1 0

? ? ?




U (p) U (p) ?

0 u(p) ?

0 0 ?

=


L(p)U (p) L(p)U (p) ?

L (p)U (p) L (p)U (p) +u(p) ?

? ? ?


where U (p) ∈T +

p (C), L(p) ∈T −
p (C), U (p) ∈Cp ,

[
L (p)

]T ∈Cp and u(p) ∈C.

Proposition 1.7 Matrix A has a LU-decomposition if Algorithm 3 reaches p = n, i.e. if u(p) 6= 0 for all p.

This occurs when all extracted matrices (Ai j )1≤i , j≤p , p≤n, are invertible.

The interest of the LU-decomposition relies on the fact that rather than solving directly the system

Ax = b, we solve two triangular systems, namely Ly = b and Ux = y . The very cost of this procedure

concerns the computation of L and U .

There exist other decompositions that may help the resolution of particular linear systems.

Proposition 1.8 (Schur) Any matrix can be decomposed as U
T

TU where U is unitary and T ∈T +
n (C).
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Algorithm 1 Resolution of a lower triangular system

Data: A ∈T −
n (C), b ∈Cn

for i from 1 to n do
if Ai i = 0 then

Matrix A is not invertible
Algorithm stopped

else

xi ←
bi −∑i−1

k=1 Ai j x j

Ai i
end if

end for

Algorithm 2 Resolution of an upper triangular system

Data: A ∈T +
n (C), b ∈Cn

for i from n to 1 do
if Ai i = 0 then

Matrix A is not invertible
Algorithm stopped

else

xi ←
bi −∑n

k=i+1 Ai j x j

Ai i
end if

end for

Algorithm 3 Factorization
Data: A ∈ GLn(C)
U11 ← A11

L11 ← 1
p ← 1
while p ≤ n and Upp 6= 0 do

U ← [
(Li j )1≤i≤p,1≤ j≤p

]−1 (Ai ,p+1)1≤i≤p

L ← (Ap, j )1≤ j≤p
[
(Ui j )1≤i≤p,1≤ j≤p

]−1

(Ui ,p+1)1≤i≤p ←U

(Lp+1, j )1≤ j≤p ←L

Up+1,p+1 ← Ap+1,p+1 −LU

Lp+1,p+1 ← 1
p ← p +1

end while
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Proposition 1.9 (Cholesky) Any real symmetric positive-definite matrix can be decomposed as B T B where

B ∈T +
n (R). Moreover, if we impose Bi i > 0 for all i ∈ {1, . . . ,n}, then B is unique.

Proposition 1.10 (QR) Any real invertible matrix can be decomposed as QR where Q is orthogonal and

R ∈T +
n (R). The decomposition is unique if we suppose that all diagonal coefficients from R are positive.

Eigenvalues

The analysis of the spectrum of a matrix provides important properties.

Definition 1.9 λ ∈ C is said to be an eigenvalue of a matrix A ∈ Mn(C) if there exists x ∈ Cn\{0} such that

Ax =λx. x is called an eigenvector of A associated to λ. The set of all eigenvalues of A is called the spectrum

of A.

Definition 1.10 Let λi and xi the eigenvalues of A and some corresponding eigenvectors. A is said to be

diagonalizable if the eigenvectors xi form a basis of Cn . Then there exist D ∈ Dn(C) and U ∈ GLn(C) such

that

A =U DU−1.

Moreover, we have Di i =λi and the column vectors of U are the eigenvectors xi .

Proposition 1.11 Any matrix A ∈Mn(C) has n eigenvalues. There are the roots of polynomial det(A−X In).

Proposition 1.12 A matrix is positive-definite if and only if its eigenvalues are stricly positive.

Proposition 1.13 Any real symmetric matrix is diagonalizable and U is orthogonal.

Linear stability

We finally get interested in the stability of linear systems, i.e. its sensitivity to small perturbations of the

matrix or of the right hand side. A key-point in this matter is the condition number of a matrix. Let ‖ · ‖ be

a norm on Cn . The corresponding norm on Mn(C) is

|||A||| = sup
x∈Cn ,x 6=0

‖Ax‖
‖x‖ .

Definition 1.11 The condition number of a matrix A ∈ GLn(C) is the positive real number

cond‖·‖(A) = |||A|||× ∣∣∣∣∣∣A−1
∣∣∣∣∣∣ .

Actually, this number provides a criterion to determine whether the matrix is “easy” to invert: the

closer to 1, the easier the resolution of the linear system. When small changes occur in the linear system,

we control the change on the solution thanks to the two following results.

Proposition 1.14 Let A ∈ GLn(C) and ∆A ∈ Mn(C) be two matrices such that A +∆A ∈ GLn(C). For b ∈
Cn\{0}, let x and y be respectively the solutions of the linear systems Ax = b and (A+∆A)y = b. Then

‖x − y‖
‖y‖ ≤ cond‖·‖(A)

|||∆A|||
|||A||| .
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Proposition 1.15 For A ∈ GLn(C), b ∈ Cn\{0} and ∆b ∈ Cn , let x and y be respectively the solutions of the

linear systems Ax = b and Ay = b +∆b. Then

‖x − y‖
‖x‖ ≤ cond‖·‖(A)

‖∆b‖
‖b‖ .

Iterative methods

The previous methods are called direct but they may not apply to any matrix. Another possibility is to use

an iterative method, i.e. to build a sequence xp converging to the solution of Ax = b as p goes to ∞.

Definition 1.12 An iterative method is the process of defining a sequencex0 ∈Cn ,

∀ p ≥ 0, xp+1 = M−1 (N xp +b) .

M and N are two matrices such that A = M −N and M ∈ GLn(C).

Proposition 1.16 The iterative method is convergent if max
{|λ| : λ ∈ Sp(M−1N )

}< 1.

1.3.4 Taylor series expansions

This paragraph is devoted to approximation theory for scalar real functions. The extension of those results

to vector functions will be stated in Chapter 3.

Proposition 1.17 (Taylor–Young) Let φ be a function in C n([a,b],R). Then

φ(x) =
n∑

k=0

(x −a)k

k !
φ(k)(a)+o

(
(x −a)n)

.

If in addition φ ∈C n+1([a,b],R), then the remainder is O
(
(x −a)n+1

)
.

This result means that in the neighbourhood of a, function φ can be approximated by the polynomial∑n
k=0

φ(k)(a)
k ! (x −a)k . Notice that for polynomials, this formula holds for any n and is exact (the remainder

is equal to 0) for n greater that the degree of the polynomial.

In the general case, it can be interesting to specify the remainder in order to have a precise idea of the

error.

Proposition 1.18 (Taylor–Lagrange) Let φ be a function in C n+1([a,b],R).

∀ x ∈ [a,b], ∃ c ∈ (a, x), φ(x) =
n∑

k=0

(x −a)k

k !
φ(k)(a)+ (x −a)n+1

(n +1)!
φ(n+1)(c).

Proposition 1.19 (Taylor with integral remainder) Let φ be a function in C n+1([a,b],R). Then

∀ x ∈ [a,b], φ(x) =
n∑

k=0

(x −a)k

k !
φ(k)(a)+

∫ x

a

(x − y)n

n!
φ(n+1)(y) dy.
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Example 1.1 Applying Prop. 1.17, 1.18 and 1.19 to φ(t ) = exp t , knowing that for all k ∈ Z+, φ(k) = φ, we

obtain for a = 0, x = t and any n

exp t =
n∑

k=0

t k

k !
+



O (t n+1),

t n+1

(n +1)!
ect , ct ∈ [0, t ],∫ t

0

(t −τ)n

n!
eτ dτ.
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Chapter 2

Ordinary differential equations (ODE)

2.1 Introduction

An ordinary differential equation (ODE) is an equation whose unknown is a function and which relates the

function to its derivatives. The general 1st–order case reads{
ŷ ′(t ) = f

(
t , ŷ(t )

)
, (2.1a)

ŷ(t0) = y0. (2.1b)

The scalar variable t lies in a given open interval I ⊂ R. The unknown is the function ŷ : I ⊂ R −→ Rd ,

d ∈Z+. The Cauchy data are t0 ∈ I and y0 ∈Rd .

Function f is a datum which depends on the scalar variable t and on the vector y . It satisfies the following

hypothesis:1

f : I ×Rd −→Rd is of class C 1 with respect to (t , y). (H)

Such differential problems arise in several domains like biology or physics. For instance, if f represents a

velocity field, then ŷ(t ) is the location of a particle at time t which was located at y0 at time t0. Thus the

curve t ∈ I 7→ ŷ(t ) is the trajectory of the particle.

Given ( f , t0, y0), the issue boils down to stating whether a solution exists and over which interval J ⊆ I .

Then, an important matter consists in proving properties of solutions (positivity, monotonicity, . . . ) and

even in deriving explicit expressions.

Indeed, some of problems (2.1) can be solved directly (see § 2.2). For other cases, we cannot provide an

explicit expression for the solution. The art of numerical analysis then consists in computing an approxi-

mation of the solution with a control over the error by means of a computer and a numerical method.

2.2 Classical examples

The simplest ODEs are the linear 1st–order ODE with constant coefficients

ŷ ′(t ) =αŷ(t ), ŷ(t0) = y0, (2.2)

1The classical results is stronger than this statement. It suffices to have f Lipschitz-continuous with respect to y : there exists a
constant C f > 0 such that ∀ t ∈ I , ∀ (y, z) ∈Rd ×Rd , ‖ f (t , y)− f (t , z)‖6C f ‖y − z‖.

21
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for some α ∈R. This equation corresponds to (2.1) for f (t , y) = f (y) =αy . The solution reads

ŷ(t ) = y0 exp
[
α(t − t0)

]
.

The affine case can be treated similarly (α ∈R∗, β ∈R):ŷ ′(t ) =αŷ(t )+β,

ŷ(t0) = y0.
=⇒ ŷ(t ) =

(
y0 + β

α

)
exp

[
α(t − t0)

]− β

α
.

It is also achievable to solve linear 2nd–order ODE with constant coefficientsαŷ ′′(t )+βŷ ′(t )+γŷ(t ) = 0,

ŷ(0) = δ, ŷ ′(0) = ε,
(2.3)

where (α,β,γ) ∈ R3, α 6= 0. We are looking for a solution like ŷ(t ) = er t for a certain r ∈ R. Then r satisfies

the equation

αr 2 +βr +γ= 0. (2.4)

Three cases must be considered depending on the sign of the discriminant ∆=β2 −4αγ.

• If ∆ > 0, then Equation (2.4) has two real solutions r1 and r2. The solutions to ODE (2.3) have the

form

ŷ(t ) = ηer1t +ζer2t .

Coefficients η and ζ are computed thanks to initial conditions (2.1b).

• If ∆= 0, then Equation (2.4) has a unique solution r0. ODE (2.3) has the following solution

ŷ(t ) = (η+ζt )er0t .

• If ∆< 0, then Equation (2.4) has two complex solutions r1 and r1. Hence the solutions to (2.4)

ŷ(t ) = eRe(r1)t [
ηcos

(
Im(r1)t

)+ζsin
(
Im(r1)t

)]
.
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We can also handle some variable coefficient cases. Let α and β two functions of t defined over an

interval [t1, t2]. We then focus on the equation

ŷ ′(t ) =α(t )ŷ(t )+β(t ), ŷ(t0) = y0. (2.5)

The domain of existence of ŷ is at most [t1, t2]. Let A be a primitive ofα. Then the solution of Equation (2.5)

is

ŷ(t ) = e A(t )
∫ t

t0

β(τ)e−A(τ) dτ+e A(t )−A(t0) y0.

A last case which can be solved explicitly is the autonomous case, i.e. (2.1) when f (t , y) =ψ(y) assuming

that ψ is continuous and never vanishes (and thus does not change its sign). Then (2.1) may be written

ŷ ′(t )

ψ
(
ŷ(t )

) = 1 =⇒ Ψ
(
ŷ(t )

)−Ψ(y0) = t − t0,

whereΨ′(y) = 1
ψ(y) . Hence

ŷ(t ) =Ψ−1(Ψ(y0)+ t − t0
)
.

Example 2.1 Let us solve the following ODE:ŷ ′(t ) = ŷ(t )2 +1,

ŷ(0) = 3.

It corresponds to the previous case with φ(t ) = 1 and ψ(y) = y2 +1. ThenΦ(t ) = t ,Ψ(y) = arctan y and

arctan ŷ(t ) = t +arctan3.

As tan is the inverse function of arctan over (−π,π), we have

ŷ(t ) = tan(t +arctan3) mod 2π.

2.3 Theoretical results

2.3.1 Vocabulary

Let us give some definitions of classical terms that will be used in the sequel.

Definition 2.1 The order of ODE (2.1) corresponds to the highest degree of derivation in Equation (2.1a).

Example 2.2 Equation (2.2) is of first–order while (2.3) is of second–order. However, any n-th–order ODE

can be written as a 1st–order providing all initial data are given at the same time t0. For example, (2.3) reads

Ŷ′(t ) = AŶ(t ) analogous to (2.2), with

Ŷ(t ) =
(

ŷ(t )

ŷ ′(t )

)
and A =

(
0 1

− γ
α −β

α

)
.
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However, if ŷ ′(0) = ε is replaced in (2.3) by ŷ ′(1) = ζ, then this is not a Cauchy problem anymore and it does

not read as a 1st–order problem.

Definition 2.2 ODE (2.1) is said to be linear if, for any solutions y1 and y2 to (2.1a) and any constants c1

and c2, then c1 y1 + c2 y2 is also a solution.

Definition 2.3 ODE (2.1) is said to be autonomous if function f does not depend on t.

2.3.2 Existence and uniqueness

Theorem 2.1 (Cauchy-Lipschitz) Let f be a function satisfying Hypothesis (H). Then for any data (t0, y0) ∈
I ×Rd , there exists a unique maximal solution y ∈ C 1(J ) to System (2.1) where J ⊂ I is an open neighbour-

hood of t0.

The term maximal means that there does not exist any solution over an interval K ) J .

Proposition 2.1 If f is of class C k with respect to (t , y), then the unique solution y is of class C k+1(J ).

Proposition 2.2 (Cauchy) If f is continuous with respect to (t , y) and affine with respect to y, then the so-

lution to (2.1) exists over the whole interval I .

Proposition 2.3 If the maximal solution ŷ is bounded over the interval J , then J = I .

These results do not provide any solution but ensure that there exists a solution. This is important

from a modelling point of view insofar as the model is not absurd and leads to a solution. The fact that this

solution has a physical meaning is another matter.

2.4 One–step methods

We are now tackling the resolution of ODEs like (2.1) for which we are not able to provide explicit solutions

but to which we can apply Theorem 2.1, which ensures the existence of a solution ŷ on an interval J =
(t0, t0 +T ) for a certain T > 0.

Even if nothing has to be done when we know exact solutions, Section 2.2 is worth of interest. Indeed,

we are going in the sequel to work out several numerical techniques to approximate solutions to ODEs. The

processing of simple ODEs for which exact solutions are provided will enable us to assess these techniques

by means of comparisons between the numerical solution and the exact one.

We do not intend to provide approximations of the solution at any time2 t but only at time samples

(called nodes and noted t 1 := t0 < t 2 < t 3 < . . . < t N = t0 +T ) as the memory of a computer is finite. This

process is called discretization. The successive time steps are noted ∆t n = t n+1 − t n .

2Variable t does not necessarily represent time but so is it called in the sequel for clarity.
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Continuous Discrete Numerical
Problem ODE Induction relation Loop
Variable t ∈ I (t n)n≥1 n ∈ {1, . . . , N }

Unknown ŷ (yn)n≥1 Y (n), n = 1, . . . , N
Type Function Sequence Vector

Table 2.1: Different approaches of ODEs

For the sake of simplicity, we consider a homogeneous3 grid t n = t0 + (n −1)∆t where the time step is

equal to∆t = T
N−1 for a fixed number of intervals N . The aim of this part is to conceive a method yielding a

sequence of approximations of the values ŷ(t n). To do so, we have to deal with derivatives in (2.1) that we

must approximate using only values of the unknown.

Considering results from the previous section, we have

ŷ ′(t ) =



ŷ(t +∆t )− ŷ(t )

∆t
+O (∆t ),

ŷ(t )− ŷ(t −∆t )

∆t
+O (∆t ),

ŷ(t +∆t )− ŷ(t −∆t )

2∆t
+O (∆t 2).

Each one provides a numerical scheme. For instance, if we consider the first line above, we have

f
(
t n , ŷ(t n)

)= ŷ ′(t n) = ŷ(t n+1)− ŷ(t n)

∆t
+O (∆t ).

If we “ignore” the error term, the equality does not hold rigorously anymore. That is how we construct the

sequence yn :4

f (t n , yn) = yn+1 − yn

∆t
.

Several concepts and examples are given in the sequel. The overall process of the numerical resolution of

an ODE is summarized in Table 2.1.

The point of this procedure is that the larger N , the smaller ∆t , the more accurate the numerical so-

lution. This fact will be conceptualized in Definition 2.6. Hence, a user would like to set N as large as

possible. But as N represents the number of iterations, increasing N makes the computational time larger.

There is thus an equilibrium to find. Likewise, if the error goes to 0 as ∆t decreases, the convergence

is not the same for all schemes, which provides a criterion to choose a scheme rather than another (see

Definition 2.8).

3Homogeneous means that ∆t n =∆t for all n.
4This is the well-known explicit Euler scheme.
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2.4.1 Main definitions

Definition 2.4 A numerical scheme derived to solve (2.1) is said to be one–step if it can read

yn+1 − yn

∆t
=Φ(t n ,∆t , yn). (2.6)

FunctionΦ : I ×R+×Rd −→Rd is thus specific to each scheme.

Definition 2.5 Scheme (2.6) is said to be convergent if

lim
∆t→0

max
n

∥∥yn − ŷ(t n)
∥∥= 0.

Hence the smaller ∆t (i.e. the larger N ), the better the approximation yn of ŷ(t n).

Definition 2.6 Scheme (2.6) is said to be consistant if

lim
∆t→0

max
n

∥∥∥∥ ŷ(t n+1)− ŷ(t n)

∆t
−Φ(

t n ,∆t , ŷ(t n)
)∥∥∥∥= 0.

Definition 2.7 Scheme (2.6) is said to be stable if, for any sequence (εn) in Rd and for (zn) defined by z0 ∈Rd

and the induction formula
zn+1 − zn

∆t
=Φ(t n ,∆t , zn)+εn ,

there exist some constants M1 ≥ 0 et M2 ≥ 0 independent from yn and zn such that

max
n

∥∥yn − zn
∥∥6 M1‖y0 − z0‖+M2

n∑
k=0

εk .

The most important theorem is the following:

Theorem 2.2 (Lax-Richtmyer) A numerical scheme is convergent if it is stable and consistant.

Definitions 2.6 and 2.7 may be quite puzzling. That is why more practical characterizations are given:

Proposition 2.4 Scheme (2.6) is consistant if and only ifΦ(t ,0, y) = f (t , y) for all t ∈ I and y ∈Rd .

Proposition 2.5 Scheme (2.6) is stable if and only if function y 7−→Φ(t ,∆t , y) is Lipschitz-continuous for all

t ∈ I and ∆t small enough.

Finally, a quite useful notion is:

Definition 2.8 Scheme (2.6) is of order p (p ∈Z+) if∥∥∥∥ ŷ(t n+1)− ŷ(t n)

∆t
−Φ(

t n ,∆t , ŷ(t n)
)∥∥∥∥=O (∆t p ).

Hence the larger p, the more accurate the scheme.
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2.4.2 Classical schemes

Name Formula Order Explicit

Forward Euler yn+1 = yn +∆t f (t n , yn) 1 Yes

Backward Euler yn+1 = yn +∆t f (t n+1, yn+1) 1 No

Enhanced Euler yn+1 = yn +∆t f
(
t n + ∆t

2 , yn + ∆t
2 f (t n , yn)

)
2 Yes

Heun yn+1 = yn + ∆t
2

[
f (t n , yn)+ f

(
t n +∆t , yn +∆t f (t n , yn)

)]
2 Yes

Crank-Nicholson yn+1 = yn + ∆t
2

[
f (t n , yn)+ f (t n+1, yn+1)

]
2 No

Runge–Kutta 2

(λ ∈ [0,1])
yn+1 = yn +∆t

[
(1−λ) f (t n , yn)+λ f

(
t n + ∆t

2λ , yn + ∆t
2λ f (t n , yn)

)]
2 Yes

Runge–Kutta 3
yn+1 = yn + ∆t

6 (k1 +4k2 +k3), k1 = f (t n , yn),
3 Yes

k2 = f
(
t n + ∆t

2 , yn + ∆t
2 k1

)
, k3 = f

(
t n+1, yn +∆t (2k2 −k1)

)
yn+1 = yn + ∆t

6 (k1 +2k2 +2k3 +k4), k1 and k2 as for RK3,
Runge–Kutta 4

k3 = f
(
t n + ∆t

2 , yn + ∆t
2 k2

)
, k4 = f

(
t n+1, yn +∆tk3

) 4 Yes

2.4.3 Summary

A numerical method to approximate solutions of (2.1) thus consists in constructing a sequence (yn) such

that

yn = ŷ(t n)+O (∆t p ).

To derive a method, we used some Taylor expansions to obtain an approximation of ŷ ′(t n) in

ŷ ′(t n) = f
(
t n , ŷ(t n)

)
or an approximation of the integral in

ŷ(t n+1)− ŷ(t n) =
∫ t n+1

t n
f
(
τ, ŷ(τ)

)
dτ.

Once the approximation is chosen, the user has to ensure that the sequence is well defined (which may not

be the case for implicit methods) by expressing yn+1 as a function of yn . The sequence is initialized thanks

to the initial condition (2.1b) by setting y1 = ŷ(t 1) = ŷ(t0) = y0. Then, for a given scheme (i.e. a given way

of constructing the sequence),∆t governs the accuracy. We say on Figure 2.1 the results for various N (and

thus various ∆t of the Forward Euler scheme applied to the ODE ŷ ′ = −15ŷ , ŷ(0) = 1. The smaller ∆t , the

closer the numerical solution to the exact solution.

2.5 Multi–step schemes

In the previous section, only two consecutive terms of the sequence (yn) were involved in the scheme,

namely yn+1 and yn . There also exist multi–step schemes.
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Figure 2.1: Numerical solutions obtained by means of the Forward Euler scheme for various ∆t

Definition 2.9 A numerical scheme aimed at solving (2.1) is said to be multi–step (with q steps) if there exist

coefficients (αk )0≤k≤q and (βk )06k6q such that αq 6= 0, |α0|+ |β0| 6= 0 and

q∑
k=0

αk yn+k =∆t
q∑

k=0
βk f (t n+k , yn+k ). (2.7)

Notions of consistency, stability and order adapt to this new kind of schemes. The following results

provide practical assessments.

Proposition 2.6 Scheme (2.7) is consistant if and only if
q∑

k=0
αk = 0 and

q∑
k=0

kαk =
q∑

k=0
βk .

Proposition 2.7 (Dahlquist) Let ρ be the polynomial

ρ(x) =
q∑

k=0
αk xk .

Scheme (2.7) is stable if and only if the roots ξ of ρ satisfy |ξ| ≤ 1 with |ξ| = 1 only if ξ is simple (ρ can be

factorized by x −ξ but not by (x −ξ)2).

Proposition 2.8 Scheme (2.7) is of order p ≥ 2 if and only if

∀ i ∈ {2, . . . , p},
q∑

k=0
k iαk = i

q∑
k=0

k i−1βk .

Theorem 2.2 also applies to this situation.



Chapter 3

Partial differential equations (PDE)

This chapter is devoted to differential equations involving functions of multiple variables. These equations

are called Partial Differential Equations (PDEs). Generally, variables represent time and space coordinates.

3.1 Reminder of functional analysis

Let f be a smooth function from Rd into R. The variable is denoted by x ∈Rd . Classical differential opera-

tors are:

• The k–th partial derivative noted
∂ f

∂xk
;

• The gradient which is the vector of all partial derivatives and noted

∇ f =


∂ f
∂x1
∂ f
∂x2

...
∂ f
∂xd

 ;

• The Hessian matrix, which is a collection of all 2nd–order derivatives and whose coefficients are

[
Hess f

]
i j =

∂2 f

∂xi∂x j
;

• The Laplacian operator, which is the trace of the Hessian matrix

∆ f =
d∑

k=1

∂2 f

∂x2
k

.

When f = ( f1, . . . , fd ) is a function from Rd into Rd , the divergence operator reads

∇· f =
d∑

k=1

∂ fk

∂xk
.

29
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The notion of Taylor series expansion can be extended to multiple variable functions. For h ∈ Rd , we

have

f (x +h) = f (x)+
d∑

k=1
hk

∂ f

∂xk
(x)+ 1

2

d∑
i=1

d∑
j=1

hi h j
∂2 f

∂xi ∂x j
(x)+o

(‖h‖2) ,

or equivalently

f (x +h) = f (x)+〈∇ f (x),h
〉+ 1

2

〈
Hess f (x)h,h

〉+o
(‖h‖2) .

Symbols 〈·, ·〉 and ‖ ·‖ denote the euclidian inner product and the corresponding norm on Rd .

3.2 Analysis of PDEs

3.2.1 Classification of PDEs

PDEs can be distinguished through several parameters such as

1. order (highest degree of derivation) with respect to each variable;

2. linearity;

3. “nature”.

The nature of a PDE describes physical properties of solutions. It can be of three kinds:1

1. hyperbolic equations (transport equation, Euler equations, Saint-Venant equations, wave equation,

. . . ); solutions are characterized by a finite propagation speed and the equations are well-posed un-

der suitable boundary conditions (only on parts of the boundary where the characteristics come

in);

2. elliptic equations (Poisson equation, Laplace equation, . . . ); unlike the previous kind, these equa-

tions have a regularizing effect with an infinite propagation speed;

3. parabolic equations (heat equation, Black & Scholes model, . . . ); they have similar properties to

elliptic equations; boundary conditions are required on the whole boundary.

3.2.2 Boundary conditions (BC)

It is often necessary to get information from the boundary to supplement the equations. Indeed, if the

equation in itself provides a global behaviour, it is not enough to compute the solution. For instance, if we

consider the 1st–order problem

∂x u = t over (0,1),

we know that u takes the form u(t , x) = t x+c(t ) for some function c to be determined. Without information

at x = 0 or x = 1, we cannot determine entirely the solution. Imposing u(t ,0) = t for example leads to

u(t , x) = t (x +1).

1The mathematical analysis of the nature of PDEs will not be detailed here.
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Continuous Discrete Numerical
Problem PDE Induction relation Loops
Variable t ∈ I , x ∈Ω (t n)1≤i≤Nt , (xi )1≤i≤Nx

n ∈ {1, . . . , Nt }, i ∈ {1, . . . , Nx }
Unknown u (un

i )
1≤n≤Nt ,1≤i≤Nx

U (n,k), n = 1, . . . , Nt ,k = 1, . . . , Nx

Type Function Sequence Matrix

Table 3.1: Different approaches of PDEs

Likewise, for the second–order problem

∂2
xx u = t ,

we deduce that

u(t , x) = t x2

2
+ c1(t )x + c2(t ).

Hence, two boundary conditions are required to fix c1 and c2.

BC are quite natural in dimension 1 as they can be easily interpreted. In higher dimensions, they are as

important but as the boundary is not a single point, they may be more tricky to impose.

There exists an infinite number of BCs. The most common BCs are:

• Dirichlet boundary condition: the unknown is imposed on a part of the boundary. For instance,

u(t , x = 0) = 0 is of this type. If u represents the velocity of a fluid, this BC means that the fluid

cannot slip over the boundary.

• Neumann boundary condition: the normal derivative of the unknown is imposed on a part of the

boundary. This corresponds to the flux of the unknown through the boundary. It reads ∂x u(t ,0) = 0

in 1D, ∇u ·n = 0 in higher dimensions, where n is the unit outward normal vector to the boundary.

• Robin boundary condition: it is a linear combination of the two previous ones.

3.3 The Finite Difference Method (FDM)

As stated earlier, this method relies on Taylor series expansions and can be summarized in Table 3.1.

3.3.1 Laplacian

The most classical example of PDEs is the Poisson equation in a bounded domainΩ⊂Rd :−∆u
Ω= f ,

u
∂Ω= g .

Functions f and g are some given functions on Ω and on its boundary ∂Ω. Unknown u may for instance

represent the velocity potential in fluid mechanics or the electric potential in electrostatics. There is an

extensive literature about this equation and particularly about the regularity of its solutions.
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Its one-dimensional version reads { −u′′(x) = f (x), x ∈ (0,1), (3.1a)

u(0) = γ, u(1) = δ. (3.1b)

System (3.1) is not a Cauchy problem since all BCs are not given at the same point. Thus we cannot state the

existence of a solution through Theorem 2.1. However, we can exhibit a solution. By means of 2 successive

integrations, we obtain

u(x) = γ+
(
δ−γ+

∫ 1

0
(1− z) f (z) dz

)
x −

∫ x

0
(x − z) f (z) dz.

The Cauchy counterpart is for example{ −u′′(x) = f (x), x ∈ (0,1), (3.2a)

u(0) = γ, u′(0) = ε, (3.2b)

whose solution is

u(x) = γ+εx −
∫ x

0
(x − z) f (z) dz.

However, even if the exact solutions are known in both cases, it may be difficult to compute them. Indeed,

the integrals appearing in both solutions may not be computable for some tricky f . That is why it seems

necessary to develop methods to provide good approximations of u.

To do so, we will apply the Finite Difference Method on a homogeneous cartesian grid. Let N be a

positive integer, ∆x = 1
N−1 the mesh size, xk = (k − 1)∆x ∈ (0,1) for k ∈ {1, . . . , N } the mesh nodes. The

purpose of the method is to construct a vector

U =


U1

U2
...

UN

≈


u(x1)

u(x2)
...

u(xN )

 .

As there are some derivatives of u appearing in (3.1a) and (3.2a), we have to approach u′′ using only values

of u. That is why this method relies on the Taylor expansions. Indeed, we can verify that

u′′(x) = u(x −∆x)−2u(x)+u(x +∆x)

∆x2 +O (∆x2),

which reads for x = xk , k ∈ {2, . . . , N −1}

u′′(xk ) = u(xk−1)−2u(xk )+u(xk+1)

∆x2 +O (∆x2) (3.3)

This equality holds rigorously. To construct U , we neglect the error term O (∆x2) and we replace u(xk ) by

Uk . This strategy applied to (3.1a) and (3.2a) leads to

−Uk−1 +2Uk −Uk+1 =∆x2 fk , (3.4)
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where fk is equal to f (xk ) or is an approximation of f (xk ). (3.4) is an induction relation (linear, 2nd–order)

which defines the sequence Uk . The sequence has though to be initialized. This can be done much more

easily for (3.2) than for (3.1). In the former case, we have directly

U1 = u(x1) = γ.

Then, due to some Taylor expansion

u(x2) = u(x1)+∆xu′(x1)+O (∆x2),

we choose to take

U2 = γ+ε∆x.

From (3.4), we have

U1 = γ, U2 = γ+ε∆x, ∀ k ≥ 1, Uk+1 = 2U j −Uk−1 −∆x2 fk .

By induction, we can compute all components of U .

In the latter case which is (3.1), the calculations are different. BCs (3.1b) yield

U1 = γ, UN = δ.

As U2 is not known, we cannot compute U3, U4, . . . and the sequence is implicit. Then, the linear system

U1 = γ
−U1 +2U2 −U3 =∆x2 f2

...

−UN−2 +2UN−1 −UN =∆x2 fN−1

UN = δ

reads as a matrix equation

AU = f, where f =



γ

∆x2 f2
...

∆x2 fN−1

δ


and A =



1 0 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 0 1


There exist several methods (direct, iterative, . . . ) to solve linear systems (see § 1.3.3). However, BCs made

the matrix nonsymmetric which may cause extra computational costs. However BCs can be taken into

account differently. Scheme (3.4) for k = 2 can be written

2U2 −U3 =∆x2 f2 +U1 =∆x2 f2 +γ.
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Likewise

2UN−1 −UN−2 =∆x2 fN−1 +δ.

Hence U1 and UN are not considered as unknowns anymore and the linear system is smaller:

ÃŨ = f̃, where Ũ =


U2

...

UN−1

 , f̃ =


∆x2 f2 +γ

...

∆x2 fN−1 +δ

 and Ã =


2 −1 0

−1
. . .

. . .
. . .

. . . −1

0 −1 2

 .

Even if we managed to fasten the resolution of the linear system, the fact remains that solving (3.1) is more

expensive than solving (3.2) from a computational point of view since it requires the inversion of a matrix

at each time iteration.

3.3.2 Transport equation

The previous paragraph highlighted the influence of BCs on the efficiency of the scheme. However, vari-

ables played the same role. That is why we focus in this section on another equation where time and space

variables induce additional numerical difficulties.

Given a constant velocity field u0 and an initial datum Y0(x), we consider the 1D hyperbolic transport

equation {
∂t Ŷ (t , x)+u0∂x Ŷ (t , x) = 0, t ≥ 0, x ∈ (0,1), (3.5a)

Ŷ (0, x) = Y0(x), x ∈ (0,1). (3.5b)

The unknown is function Ŷ (t , x). This equation is a perfect illustration of numerical issues as it will be

emphasized below.

Exact solution As a hyperbolic equation, (3.5) may require boundary conditions. As it is suggested by the

name of the equation, function Ŷ is transported at velocity u0. But we need additional information where

the velocity field comes in the domain: if u0 > 0 (which will be assumed in the sequel2), we must impose a

BC at x = 0. We thus supplement (3.5) with

Ŷ (t ,0) =Y (t ), (3.5c)

where Y is given. The exact solution to (3.5) is

Ŷ (t , x) =


Y0(x −u0t ), if x −u0t ≥ 0,

Y

(
t − x

u0

)
, otherwise.

(3.6)

2Otherwise, a BC is required at x = 1.
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Finite differences Set T = 1 the final time. Let us discretized the spatio-temporal domain [0,1]×[0,1]. To

do so, let Nx ≥ 2 be the number of space intervals and Nt ≥ 2 the number of time iterations (to be specified

later). The mesh is given by

t n = (n −1)∆t , 1 ≤ n ≤ Nt , xi = (i −1)∆x, 1 ≤ i ≤ Nx ,

where the time step is equal to ∆t = 1
Nt−1 and the mesh size to ∆x = 1

Nx−1 .

In the spirit of Section 2.4, the idea is to replace every derivative in (3.5a) by approximation formulae

in order to construct the sequence Y n
i which approximates Ŷ (t n , xi ). Here are some natural attempts:

• Upwind scheme:
Y n+1

i −Y n
i

∆t
+u0

Y n
i −Y n

i−1

∆x
= 0; (3.7a)

• Downwind scheme:
Y n+1

i −Y n
i

∆t
+u0

Y n
i+1 −Y n

i

∆x
= 0; (3.7b)

• Implicit scheme:
Y n+1

i −Y n
i

∆t
+u0

Y n+1
i −Y n+1

i−1

∆x
= 0; (3.7c)

• Centered scheme:
Y n+1

i −Y n
i

∆t
+u0

Y n
i+1 −Y n

i−1

2∆x
= 0. (3.7d)

To compare these schemes and choose the “best” one, we get interested in qualitative properties like

consistency, stability and order. Definitions 2.6, 2.7 and 2.8 adapt naturally to the multiple variable case.

For instance, to study the consistency of schemes (3.7), we replace Y n
i by Ŷ (t n , xi ) into the schemes and

we use Taylor expansions to determine the error as O (∆xk +∆t p ).

As for stability, it depends on the norm used in Def. 2.7. For instance, the L∞ stability corresponds to

the ‖ · ‖∞ norm and means that the numerical solution is bounded at all iterations. Scheme (3.7a) can be

rewritten as

Y n+1
i =λY n

i−1 + (1−λ)Y n
i , λ= u0∆t

∆x
.

Hence, through a barycentric analysis, we prove that the upwind scheme is L∞–stable if λ ∈ [0,1]. Indeed,

under that hypothesis, if e.g. Y n
i−1 < Y n

i , then Y n+1
i ∈ (Y n

i−1,Y n
i ) and the numerical solution cannot in-

crease (or decrease) infinitely. Similar analyses can be performed for each scheme using mathematical

techniques (Van Neumann, . . . ). Condition λ ∈ [0,1] implies a constraint upon the time step which reads

∆t ≤ ∆x

u0
. (3.8)

This expresses the fact that the numerical propagation speed must be smaller than the real velocity field.

Such stability constraints are usually named the CFL condition.3

3CFL stands for Courant, Friedrichs and Lewy referring to the authors of the pioneering article on that topic.
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Properties of schemes (3.7) are detailled below:

• Upwind scheme (3.7a) is consistant up to order 1 in space and time, and L∞–stable under (3.8);

• Downwind scheme (3.7b) is consistant up to order 1 in space and time, and unconditionally unsta-

ble;

• Implicit scheme (3.7c) is consistant up to order 1 in space and time, and unconditionally stable;

• Centered scheme (3.7d) is consistant up to order 1 in time and 2 in space, and unconditionally un-

stable.

We infer that the combination of reasonable formulae for approximating derivatives may not lead to an

efficient scheme. Indeed, the fact that two parameters (∆t and∆x) are involved may require compatibility

conditions to ensure stability. As stated by Ralston & Rabinowitz, only practice can bring to the user the

expertise to make the right choices of approximation formulae. On the one hand, we notice (3.8) shows

that if we refine the spatial mesh, we must automatically refine the time mesh (linearly). On the other hand,

we should bear in mind that accuracy corresponds to small parameters. Hence, even if scheme (3.7c) is

unconditionally stable, we must take ∆x and ∆t small enough (independently from each other) to provide

an accurate solution.

3.3.3 Black & Scholes model

As we assessed some numerical methods for close problems, we now focus on the simulation of the Black

& Scholes model.

A first issue is to determine which formulation is the most relevant from a numerical point of view.

As derived in Section 1.2, we have the original formulation (1.2), the time reversed formulation (1.5), the

logarithmic-price version (1.6), those three being valid even for variable volatility and rate interest, and the

heat equation (1.7) whose equivalence only holds for constant parameters.

The second issue is to take into account the fact that we can only deal with finite domains while the

price S ranges from 0 to +∞ and the logarithmic price x from −∞ to +∞. We thus have to truncate the

domain and consequently to derive new boundary conditions for the new boundaries.

The third issue consists in evaluating the performances of each scheme especially in regard to the CPU

time and the accuracy.

Heat equation We first present numerical schemes for the heat equation (1.7). The domain is restricted

to [x, x] where x ¿ lnK ¿ x, x < 0, x > 0. We then have to impose boundary conditions at x and x. This

choice depends on the option (call or put) we are interested in, let us say a put. Remind that

ψ(θ, x) = P (T −θ,ex )e−aθ−bx .

From (1.4c), we choose to impose

ψ(θ, x) = 0. (3.9a)



3.3. THE FINITE DIFFERENCE METHOD (FDM) 37

Likewise, we take

ψ(θ, x) = K e−(a+r0)θ−bx . (3.9b)

Given Nx ≥ 2, we consider a uniform spatio-temporal mesh

xi = x + (i −1)∆x, 1 ≤ i ≤ Nx , ∆x = x −x

Nx −1
, θn = (n −1)∆θ, 1 ≤ n ≤ Nθ, ∆θ = T

Nθ−1

for some Nθ deduced from stability considerations. A natural explicit scheme reads

ψn+1
i −ψn

i

∆θ
− σ2

0

2

ψn
i+1 −2ψn

i +ψn
i−1

∆x2 = 0, 2 ≤ i ≤ Nx −1,

ψn+1
1 = K e−(a+r0)θn+1−bx ,

ψn+1
Nx

= 0.

(3.10)

Scheme (3.10) is of order 1 in time, 2 in space and is stable under condition

∆θ ≤ ∆x2

σ2
0/2

which is very prohibitive as the number of iterations must be like the square of the number of nodes. An

alternative is to choose the implicit scheme

ψn+1
i −ψn

i

∆θ
− σ2

0

2

ψn+1
i+1 −2ψn+1

i +ψn+1
i−1

∆x2 = 0, 2 ≤ i ≤ Nx −1,

ψn+1
1 = K e−(a+r0)θn+1−bx ,

ψn+1
Nx

= 0,

or equivalently

2
(
1+ ∆x2

σ2
0∆θ

)
−1 0

−1
. . .

. . .
. . .

. . . −1

0 −1 2
(
1+ ∆x2

σ2
0∆θ

)

Ψ
n+1 = 2∆x2

σ2
0∆θ

Ψn +


K e−(a+r0)θn+1−bx

0
...

0



where Ψn = (ψn
2 , . . . ,ψn

Nx−1)T . The inversion is time-consuming but the scheme is always stable. However,

as we are interested in pricing the option i.e. evaluating

P (0,S) =ψ(T , lnS)eaT Sb ,

we have to go back to the primitive variable P .
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But the uniform mesh in x will not be uniform in S anymore and will even be quite distorted: the

resulting (exponential) mesh will be fine close to S = 0 but very coarse for large S. That is why we can think

of using a nonuniform mesh in x (corresponding to a uniform mesh in S) which makes formulae more

complex: considering a nonuniform grid xi with mesh sizes ∆xi = xi+1 −xi , Scheme (3.10) is replaced by

ψn+1
i −ψn

i

∆θ
−σ2

0

(
ψn

i+1

∆xi (∆xi−1 +∆xi )
− 2ψn

i

∆xi−1∆xi
+ ψn

i−1

∆xi−1(∆xi−1 +∆xi )

)
= 0, 2 ≤ i ≤ Nx −1,

ψn+1
1 = K e−(a+r0)θn+1−bx ,

ψn+1
Nx

= 0.

(3.11)

which yields a nonsymmetric matrix.

We can also think of simulating directly the primitive formulation (1.5). We propose the following

implicit scheme over a uniform grid for S

−V n+1
i −V n

i

∆θ
+ σ2

0

2
S2

i

V n+1
i −2V n+1

i +V n+1
i−1

∆S2 + r0Si
V n+1

i+1 −V n+1
i−1

2∆S
− r0V n+1

i = 0.

The resulting matrix is however not symmetric due to the variable coefficients of the PDE. Moreover, there

is a constraint upon ∆θ which must be smaller than a constant depending on σ2
0 and r0.

3.4 The Finite Element Method (FEM)

The FD method relies on a smoothness property of the solution (i.e. to apply Taylor expansions). To deal

with less regular cases, another numerical method has been developed. Finite Element Methods are based

on integral formulations of the underlying PDE. We only give a brief overview about this method which

allows for general geometries.

The functional spaces involved in FEM are

L2(Ω) =
{

f :Ω−→R

∣∣∣∣∫
Ω
| f (x)|2 dx <∞

}
, H1(Ω) =

{
f ∈ L2(Ω)

∣∣∣∇ f ∈ (
L2(Ω)

)2
}

.

In particular, H1
0(Ω) denotes the set of functions in H1(Ω) whose trace is 0 on the boundary ∂Ω of Ω. The

scalar product over L2(Ω) is given by

〈 f , g 〉L2 :=
∫
Ω

f (x)g (x) dx.

To simplify the formulation, we first comes down to homogeneous Dirichlet conditions (indeed, BC (3.9)

are not homogeneous) by setting

Ψ(θ, x) =ψ(θ, x)−K e−(a+r0)θ−bx x −x

x −x
.
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This function satisfies 

∂Ψ

∂θ
− σ2

0

2

∂2Ψ

∂x2 = f (θ, x),

Ψ(θ, x) =Ψ(θ, x) = 0,

Ψ(0, x) = max{K −ex ,0}e−bx −K e−bx x −x

x −x
,

(3.12)

where f (θ, x) := (a + r0)K e−(a+r0)θ−bx x −x

x −x
.

Let χ be a test-function in H1
0(x, x). Then multiplying the equation by χ and integrating overΩ= (x, x),

we obtain

d

dθ

∫
Ω
Ψ(θ, x)χ(x) dx = σ2

0

2

∫
Ω

∂2Ψ

∂x2 (θ, x)χ(x) dx +
∫
Ω

f (θ, x)χ(x) dx

=−σ
2
0

2

∫
Ω

∂Ψ

∂x
(θ, x)

∂χ

∂x
(x) dx +

∫
Ω

f (θ, x)χ(x) dx. (3.13)

If Ψ satisfies (3.13) for all χ ∈ H1
0(x, x), then Ψ is called a weak solution of the heat equation and (3.13) is

the weak formulation of the heat equation. It can be proven4 that there exists a unique weak solution to

this problem.

The weak formulation can be written as

FindΨ such that: ∀χ ∈ H1
0(x, x),

d

dθ
〈Ψ(θ, ·),χ〉L2 =−A

(
Ψ(θ, ·),χ

)+〈 f (θ, ·),χ〉L2 ,

where

A ( f , g ) := σ2
0

2

∫
Ω

∂ f

∂x

∂g

∂x
dx.

The FEM consists in constructing an approximate solution to the weak formulation by replacing the test

space H1
0 by a vector space HN ⊂ H1

0 with finite dimension N . The approximate problem now reads

Find Ψ̂ ∈C 0([0,T ], HN
)

such that: ∀χ ∈ HN ,
d

dθ
〈Ψ̂(θ, ·),χ〉L2 =−A

(
Ψ̂(θ, ·),χ

)+〈 f (θ, ·),χ〉L2 .

Let (χ1, . . . ,χN ) a basis of HN . Then the previous formulation is equivalent to

Find Ψ̂ ∈C 0([0,T ], HN
)

such that: ∀ i ∈ {1, . . . , N },
d

dθ
〈Ψ̂(θ, ·),χi 〉L2 =−A

(
Ψ̂(θ, ·),χi

)+〈 f (θ, ·),χi 〉L2 .

We decompose Ψ̂(θ, x) =∑N
k=1φk (θ)χk (x). Hence the problem comes down to

Find (φ1, . . . ,φN ) ∈C 0([0,T ]
)N such that:

∀ i ∈ {1, . . . , N },
N∑

k=1
φ′

k (θ)〈χk ,χi 〉L2 =−
N∑

k=1
φk (θ)A

(
χk ,χi

)+〈 f (θ, ·),χi 〉L2 ,

which is nothing but a linear ODE

MΦ′(θ) =−AΦ(θ)+F

4The Lax-Milgram theory is not the topic of this course and will thus not be developed in the sequel.
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where M and A are matrices with entries Mi k = 〈χi ,χk〉L2 and Ai k = A (χi ,χk ) and F is the vector with

components Fk = 〈 f (θ, ·),χk〉L2 . As the family χ is a basis, M is invertible. We can thus apply any numerical

scheme dedicated to ODEs (see the previous chapter). For instance, the forward Euler scheme yields

MΦn+1 = (M −∆t A)Φn +∆tF n .

The choice of the basis largely influences the computational efficiency. Indeed, if φ is orthonormal in L2,

then matrix M is diagonal!

The stability of such methods provides in 1D similar CFL conditions as for the FDM. However, it is very

efficient in higher dimensions, e.g. for a basket of several underlyings.
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