EFREI - M1 IFM Numerical analysis applied to financial issues

Practical Work #4

The Finite Difference Method (FDM) has been presented in the course. We aim at applying this method
to the well-known Black & Scholes equation with constant volatility o and constant interest rate r for the
modelling of a European vanilla put option:
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or equivalently (by means of the change of variables P(t,S) = PIT -1,9)
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We set for the present study
K=100,9 =1,0=0.2 and r =0.04.

If P is a solution to (1), then the following function
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We recall that the exact solution is given by
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We thus aim at simulating equivalent formulations (1) and (2) and then at comparing corresponding solu-
tions.
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Exercise 1 (Heat equation on a uniform grid) Let x and x be two real numbers such that x < InK < x.
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We consider a space discretization given by x; = x+ (j — 1)Ax, Ax = N _1 for some N, > 1 and a time

b
o

N,—1
Implement and compare performance of the explicit Euler scheme, the implicit Euler scheme and the Crank-
Nicholson scheme for the resolution of (2). Comparisons will be made on the primitive function P.

Ax?
Note that the stability condition reads At < —-.
o

discretization t, = (n—1)At, At = for a suitable Ny > 1.

Exercise 2 (Heat equation on a nonuniform grid) Let S and S be two real numbers such that S < K < S.

We consider an asset discretization given by S; = S+ (j —1)AS, AS =

for some Ns > 1 and a time
o S

discretization t, = (n—1)At, At =
N,—1

forsome N; > 1. The corresponding space discretization is imposed

by the change of variable:
X ji= InS j-

Weset Axj = Xxj+1— Xj.
1. Derive a formula approaching the second order spatial derivative on nonuniform grids.

2. Then implement the resolution of (2) by means of the Crank-Nicholson scheme.
Exercise 3 (Resolution of the Black & Scholes model in primitive variables)

1. Given a uniform discretization of the time-asset space [0,9] x [§,§], propose a numerical scheme
based on the explicit Euler scheme for the time derivative to solve (1).

2. Find out by means of numerical simulations a suitable value for At.
3. Implement the Crank-Nicholson scheme applied to (1).

4. Comment numerical results.
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