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PW #2: Burgers equation

Given a scalar conservation law, there exist several schemes to solve the equation. But the solutions

provided by these algorithms are not equivalent. For instance, it is relevant to compare accuracy on equiv-

alent meshes, computational costs and time, stability or consistency conditions, and so on. This work is

thus devoted to comparing some numerical schemes when solving the Burgers equation:

∂t u +∂xF (u) = 0, (1a)

with:

F (u) = u2

2
. (1b)

This problem is restricted to the periodic boundary condition case in the present work.

Let us introduce the homogeneous cartesian mesh x j = j∆x for a given mesh size ∆x. The natural

framework for solving Syst. (1) consists in defining cells of which x j is the middle. Consequently, we note

x j+1/2 = (
j + 1

2

)
∆x such that x j is the middle of I j =]x j−1/2, x j+1/2[. Likewise, the time discretization is

denoted by t n = n∆t , ∆t > 0. The approximation of the solution u at x j and t n is un
j (the unknowns are

located in the center of the cells).

1 Non-conservative schemes

Provided that the solution u is smooth enough, Eq. (1a) may be rewritten as:

∂t u +u∂x u = 0. (2)

On the one hand, given this new formulation, we can derive a natural scheme aiming at solving Eq. (2):

un+1
j −un

j

∆t
+un

j

un
j −un

j−1

∆x
= 0, if un

j ≥ 0, (3a)

un+1
j −un

j

∆t
+un

j

un
j+1 −un

j

∆x
= 0, if un

j < 0. (3b)

This scheme will be referred to as the upwind non-conservative scheme.

On the other hand, Eq. (2) may be considered as a transport equation for which the velocity field is

unknown. The method of characteristics (MOC) provides a classical scheme for this kind of equations. It

consists in tracking particules in their motion due to the velocity field (characteristic curves) in order to

keep track of relevant values. More precisely, we introduce the characteristic flow as the solution to the

ODE:
dX

dt
= u

(
t ,X (t ; s, x)

)
, X (s; s, x) = x.

This flow represents the position at time t of a particule located in x at time s. Under smoothness as-

sumptions on u, the existence (and uniqueness) of the solution X is guaranteed by the Cauchy-Lipschitz

theorem. The fact still remains that in this case, u is unknown, as well as its smoothness. That is why we

are only given a local existence.

T. Goudon, S. Minjeaud, Y. Penel 1/5 Advanced Scientific Computing



UNIVERSITY LILLE 1 MASTER DEGREE IN MATHEMATICAL ENGINEERING

The MOC relies on the following remark. If u is a solution to Syst. (1), then:

d

dt

[
u

(
t ,X (t ; s, x)

)]= 0.

This means that u is constant along characteristic curves:

u
(
t ,X (t ; s, x)

)= u(s, x).

This leads to the scheme (taking t = t n , s = t n+1 and x = x j ):

un+1
j = ûn(ξn

j ), ξn
j ≈X (t n ; t n+1, x j ). (4a)

This scheme hence consists in two steps:

• Time step: resolution of the ODE for X on [t n , t n+1]. A 1st-order approximation is:

ξn
j = x j −un

j ∆t . (4b)

• Space step: after localizing ξn
j in the interval [xk , xk+1), this step is based on a spatial interpolation

using values un
k and un

k+1. More precisely:

un+1
j =

xk+1 −ξn
j

∆x
un

k+1 +
ξn

j −xk

∆x
un

k . (4c)

This scheme is nonlinear but unconditionally stable.

2 Conservative schemes

Among schemes solving Syst. (1), there exists a class called “conservative schemes” due to a L1-norm con-

servation principle. They read:
un+1

j −un
j

∆t
+

F n
j+1/2 −F n

j−1/2

∆x
= 0, (5a)

where F n
j+1/2 is the numerical flux. This term comes from the finite volume framework. Indeed, when

integrating Eq. (1a) over [t n , t n+1]× [x j−1/2, x j+1/2], we get:

U n+1
j −U n

j +
∫ t n+1

t n

[
F

(
u(t , x j+1/2)

)−F
(
u(t , x j−1/2)

)]
dt = 0,

where the fluxes at the boundary of the cells appear. We get intersted in the sequel in numerical fluxes of

the type:

F n
j+1/2 =F(un

j ,un
j+1), (5b)

for every flux F satisfying the consistency condition F(u,u) =F (u).
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Here are several possible fluxes:

• Upwind conservative scheme:

Fupw (un
j ,un

j+1) =
F (un

j ) if un
j ≥ 0,

F (un
j+1) if un

j < 0.

• Lax-Friedrichs:

FLF (un
j ,un

j+1) = 1

2

(
F (un

j )+F (un
j+1)

)− ∆t

2∆x

(
un

j+1 −un
j

)
.

• Richtmyer-Lax-Wendroff:

FLW (un
j ,un

j+1) =F (un+1/2
j+1/2 ), where un+1/2

j+1/2 = 1

2

(
un

j+1 +un
j

)− ∆t

2∆x

(
F (un

j+1)−F (un
j )

)
.

• MacCormack:

FMcC (un
j ,un

j+1) = 1

2

[
F (un

j+1)+F (un+1/2
j )

]
, where un+1/2

j = un
j −

∆t

∆x

(
F (un

j+1)−F (un
j )

)
.

• Godunov: the idea of the Godunov scheme relies on a piecewise constant approximation over cells.

More precisely, we consider at time t n the function ûn such that ûn(t n , x) =U n
j if x ∈ I j . U n

j denotes

the mean value of the approached solution ûn at time t n over the cell I j . To progress in time, we

introduce Riemann problems at each interface x j+1/2. Let w be the solution to the Riemann model

problem:

∂t w +∂xF (w) = 0, w(0, x;uL ,uR ) =
uL if x < 0,

uR if x > 0.

Integrating Eq. (1a) over [t n , t n+1]× I j , the Godunov scheme writes as (5a) with:

F(un
j ,un

j+1) = 1

∆t

∫ t n+1

t n
F

(
ûn(t , x j+1/2)

)
dt =F

(
ûn(t n+1, x j+1/2)

)
,

for ûn(t n+1, x j+1/2) = w(∆t ,0;U n
j ,U n

j+1). For the Burgers equation, the solution to the Riemann prob-

lem is a similarity solution and reads w(t , x;uL ,uR ) = ŵ
( x

t
;uL ,uR

)
where:

ŵ(ξ;uL ,uR ) =


uL if ξ≤ uL ,

ξ if uL < ξ< uR ,

uR if ξ≥ uR ,

if uL ≤ uR and:

ŵ(ξ;uL ,uR ) =
uL if ξ≤σ,

uR if ξ>σ,

if uL > uR for σ= uL +uR

2
.
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3 Kinetic scheme

A scheme may be obtained by considering Syst. (1) as the limit of the following kinetic equation when

ε→ 0:

∂t f +a(v)∂x f = 1

ε

(
χu(v)− f

)
, (6a)

with:

a(v) =F ′(v). (6b)

The function χu(v) is defined by:

χu(v) =


1 if 0 < v < u,

−1 if u < v < 0,

0 otherwise,

(7)

and the unknows of Syst. (1) and Syst. (6) are linked by the relationship:

u(x, t ) =
∫
R

f (x, v, t )d v. (8)

We use a spliting scheme to approach the solution of Syst. (6):

• Step 1: Linear transport step

∂t f +a(v)∂x f = 0. (9)

We consider here an upwind scheme:

f
n+ 1

2
j (v) = f n

j (v)− ∆t

∆x

[
a+(v)

(
f n

j (v)− f n
j−1(v)

)
−a−(v)

(
f n

j+1(v)− f n
j (v)

)]
(10)

where a+(v) = max(a(v),0) and a−(v) = max(−a(v),0).

• Step 2: Collision step

∂t f = 1

ε

(
χu − f

)
. (11)

When ε→ 0, this step reduces to f =χu and thus, the second step of the scheme consists in solving:

f n+1
j (v) =χ

u
n+ 1

2
j

(v), (12)

where u
n+ 1

2
j =

∫
R

f
n+ 1

2
j (v)d v .

Noting that un+1
j =

∫
R

f n+1
j (v)d v =

∫
R
χ

u
n+ 1

2
j

(v)d v = u
n+ 1

2
j , we can now return to variables of interest,

that is un
j . Integrating Eq. (10) with respect to v ∈R yields an equation of the form (5a) where the flux F n

j+1/2

is defined by:

F n
j+1/2 =

∫
R

a+(v)χun
j
−a−(v)χun

j+1
d v.
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4 Directions

You may consider the periodic domain [0,2] and three initial conditions for the Burgers equation:

• u0
1(x) = x;

• u0
2(x) = 1[1/4,3/4](x);

• u0
3(x) = exp

(−(x −1/2)2

x(1−x)

)
1(0,1)(x).

You may implement 1 non-conservative scheme, 3 conservative schemes and the kinetic scheme. In each

case, try to highlight the CFL condition.

Eventually, compare the solutions to Syst. (1) and the ones to:

∂t v +∂xF̂ (v) = 0,

with v = u2 and F̂ (v) = 2
3 v3/2. These equations are equivalent in the smooth case.

You may deliver your results electronically at latest on February 6, 2011.

(yohan.penel@inria.fr and sebastian.minjeaud@inria.fr)
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