Outils Mathématiques de Base

1 Inégalités de Gronwall

Exercice 1 Soient f, g, et h trois fonctions continues, f dérivable et g positive, vérifiant l'inégalité :

$$f'(t) \leqslant f(t)g(t) + h(t).$$

1. On considère dans cette question uniquement que g est constante (de valeur $c \in \mathbb{R}$). En introduisant la fonction $F: t \mapsto f(t)e^{-ct}$, montrer que :

$$f(t) \leqslant e^{ct} \left(f(0) + \int_0^t e^{-c\tau} h(\tau) d\tau \right).$$

2. Prouver dans le cas général que l'on a :

$$f(t) \leqslant e^{G(t)} \left(f(0) + \int_0^t e^{-G(\tau)} h(\tau) d\tau \right),$$

où G est la primitive de g qui s'annule en 0.

Exercice 2 Soient f, g, et h trois fonctions continues, g positive, vérifiant l'inégalité :

$$f(t) \leqslant \int_0^t f(s)g(s) \, ds + h(t).$$

Prouver qu'alors ces trois fonctions vérifient :

$$f(t) \leqslant e^{G(t)} \int_0^t e^{-G(\tau)} g(\tau) h(\tau) d\tau + h(t),$$

$$où G(t) = \int_0^t g(\tau) d\tau.$$

Exercice 3 On considère :

- $f: [0, +\infty[\longrightarrow [0, +\infty[$, continue, croissante, telle que f(x) > 0 pour x > 0 et $\int_{1}^{+\infty} \frac{dx}{f(x)} < \infty$;
- $y: [0, +\infty[\longrightarrow [0, +\infty[, continue;$
- g positive et intégrable sur tout compact de $[0, +\infty[$;
- $y_0 > 0$.

On suppose que:

$$\forall x \geqslant 0, \qquad y(x) \leqslant y_0 + \int_0^x g(t) dt + \int_0^x f(y(t)) dt.$$

On souhaite démontrer le résultat suivant : si F est la primitive de $\frac{-1}{f}$ qui tend vers 0 en $+\infty$, alors il existe un unique T^* vérifiant

$$T^* = F\left(y_0 + \int_0^{T^*} g(t) \, dt\right),\tag{1}$$

et tel que :

$$\forall T < T^*, \ \forall x \leqslant T, \qquad y(x) \leqslant F^{-1} \left[F \left(y_0 + \int_0^T g(t) \ dt \right) - T \right]. \tag{2}$$

- 1. Caractériser F (on justifiera en particulier son existence). En déduire l'existence de la réciproque de F de $]0, F(y_0)[$ dans un intervalle à préciser.
- 2. Justifier l'existence et l'unicité de T^* solution de (1).
- 3. On définit pour $T < T^*$ la fonction $z_T : t \longmapsto y_0 + \int_0^T g(s) \, ds + \int_0^t f(y(s)) \, ds$.
 - (a) Pourquoi a-t-on $y(x) \leqslant z_T(T)$ pour tout $x \leqslant T$?
 - (b) Quelle est la régularité de z_T ?
 - (c) Etudier la monotonie et le signe de z_T .
 - (d) Majorer z'_T à l'aide de z_T et en déduire l'inégalité :

$$F(z_T(T)) - F(z_T(0)) \geqslant -T.$$

4. Conclure.

2 Fonctions en tout genre

Exercice 4 Soit $\alpha \in]0,1[$. On considère la suite de fonctions (U_n) définies sur $\left[0,\frac{\pi}{2}\right]$ par :

$$U_0(x) = \cos x$$
, $U_1(x) = \sin x$, puis, pour tout $n \ge 1$, $U_{n+1}(x) = U_n^{1-\alpha}(x)U_{n-1}^{\alpha}(x)$.

- 1. Déterminer une expression de $U_n(x)$ en fonction de n et de x.
- 2. Prouver que la suite converge uniformément sur $\left[x_0, \frac{\pi}{2} x_0\right]$ pour tout $x_0 \in \left]0, \frac{\pi}{4}\right[$. On note U_{∞} la limite.
- 3. Montrer que la convergence est uniforme sur $\left[0, \frac{\pi}{2}\right]$.

Exercice 5 Prouver les identités :

$$\int_0^1 \frac{\ln(1-t)\ln t}{t} dt = \sum_{n=1}^{+\infty} \frac{1}{n^3} et \int_0^1 \frac{dx}{x^x} = \sum_{n=1}^{+\infty} \frac{1}{n^n}.$$

Exercice 6 Déterminer les solutions développables en série entière de l'équation différentielle xy'' + y' + xy = 0.

Exercise 7 On pose $f(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n}$.

1. On considère deux suites (a_n) et (b_n) complexes. On pose $B_n = \sum_{k=0}^n b_k$. Prouver la formule :

$$\sum_{i=1}^{N} a_i b_i = -\sum_{i=1}^{N} (a_i - a_{i-1}) B_{i-1} + a_N B_N - a_0 b_0.$$

- 2. Quel est le domaine de définition complexe de la fonction f?
- 3. On pose $I_n = \int_0^1 \frac{t^n}{1+t} dt$. En étudiant cette suite, déterminer la valeur de f(-1).

Exercice 8 Soit $a \in [0, 1[$.

1. On considère la fonction 2π -périodique définie sur $]-\pi,\pi[$ par $:f(t)=\cos(at).$ Quelle est la nature de la convergence de la série de Fourier de f?

- 2. En déduire la valeur de $\cot(a\pi)$ sous forme de somme de série.
- 3. Montrer que la suite de terme général $u_n = \prod_{k=1}^n \left(1 \frac{t^2}{k^2 \pi^2}\right)$, t réel, converge.
- 4. Soit $t \in]0, 2\pi[$. Montrer que :

$$\sin t = t \cdot \prod_{n=1}^{+\infty} \left(1 - \frac{t^2}{n^2 \pi^2} \right).$$

Exercice 9 Etudier les extrema de la fonction :

$$f:(x,y) \longmapsto x^4 + y^4 - 2(x-y)^2$$

$$sur A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$$

3 Algèbre linéaire

Exercice 10 Soit $\alpha \in \mathbb{R}$. On considère l'application linéaire u sur \mathbb{R}^3 de matrice dans la base canonique :

$$A_{\alpha} = \begin{pmatrix} 1 & \alpha & \alpha \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de A_{α} ainsi que les multiplicités associées.
- 2. Pour quelles valeurs de α la matrice est-elle diagonalisable? Pour ces valeurs, déterminer une base de \mathbb{R}^3 dans laquelle la matrice de u est diagonale.
- 3. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de u est triangulaire.

Exercice 11 On considère deux endomorphismes u et v sur E, espace vectoriel de dimension finie $n \neq 0$, tels $que: u \circ v - v \circ u = u$.

- 1. Montrer que u est nilpotent. On pourra utiliser l'application linéaire $F_v: m \in \mathcal{L}(E) \mapsto m \circ v v \circ m$.
- 2. Justifier que u et v admettent au moins un vecteur propre commun.
- 3. On suppose que v est diagonalisable et que $\dim \ker u = 1$. Déterminer v.

Exercice 12 Soit $A \in \mathcal{M}_n(\mathbb{R})$. On pose : $M = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$. Déterminer une condition nécessaire et suffisante pour que M soit diagonalisable.

Exercice 13 On considère l'application de $\mathbb{R}_n[X]$ dans lui-même définie par :

$$f(P) = P(X+1) + P(X-1) - 2P(X).$$

- 1. Étudier l'image et le noyau de f.
- 2. Déterminer la matrice A de f dans la base canonique de $\mathbb{R}_n[X]$.
- 3. On pose $g(P) = P(X + \frac{1}{2}) P(X \frac{1}{2})$ de matrice B dans la base canonique. Comparer B^2 et A.

\mathscr{A} utour du \mathscr{N} ombre d' \mathscr{O} r

On note dans la suite :

• F_n et u_n , les suites définies par $F_0=0,\,F_1=1$ puis, pour tout $n\in\mathbb{N}^*$:

$$F_{n+1} = F_n + F_{n-1}$$
 et $u_n = \frac{F_{n+1}}{F_n}$;

- φ le nombre d'or donné par : $\varphi=\frac{1+\sqrt{5}}{2}$ et son conjugué $\bar{\varphi}=\frac{1-\sqrt{5}}{2}$;
- f et G les fonctions définies par $f: x \in \mathbb{R}^* \mapsto 1 + \frac{1}{x}$ et $G: x \mapsto \frac{1}{x^2 x 1}$;
- $S(x) = \sum_{n=0}^{+\infty} \frac{F_n}{x^n}$ la série de somme partielle $S_n(x) = \sum_{k=0}^n \frac{F_k}{x^k}$.

1 Quelques propriétés du nombre d'or

- 1. Déterminer les racines du polynôme $X^2 X 1$.
- 2. Justifier les formules :

(a)
$$\varphi^2 = \varphi + 1$$
;

(b)
$$\varphi = 1 + \frac{1}{\varphi}$$
;

(c)
$$\frac{\varphi^2 + 1}{2\varphi - 1} = \varphi$$
;

(d)
$$\frac{\varphi - 1}{2 - \varphi} = \varphi$$
.

On admet que $\bar{\varphi}$ vérifie les mêmes équations.

2 Analyse séquentielle

- 1. Étudier la suite (F_n) . On donnera en particulier son expression en fonction de n, son sens de variations et sa limite.
- 2. Prouver que $u_{n+1} = f(u_n)$.
- 3. Faire une étude rapide de la fonction f, comprenant sens de variations et points fixes éventuels.
- 4. Montrer que l'intervalle $\left|\frac{3}{2},2\right|$ est stable par f. En déduire que la suite (u_n) est bornée.
- 5. La suite (u_n) est-elle monotone? convergente? Déterminer sa limite éventuelle.

3 Étude d'une série

- 1. Déterminer l'ensemble de définition de la série S.
- 2. Montrer que $x^2S_{n+1} xS_n S_{n-1} = x$. En déduire que S = G sur son ensemble de définition.
- 3. Calculer $\sum_{n=0}^{+\infty} \frac{F_n}{2^n}$.
- 4. Déterminer une primitive de la fonction G.

Équation différentielle

On considère l'équation :

$$\begin{cases} x^2 y'(x) = (x^2 + 1)y^2(x), \\ y(1) = c \in \mathbb{R}. \end{cases}$$
 (3)

- 1. Justifier l'existence d'une solution maximale de l'EDO.
- 2. Montrer que -G est solution de l'équation différentielle ordinaire (3) pour un c à préciser.
- 3. Donner une solution triviale de l'EDO dans le cas c = 0. On suppose dans la suite $c \neq 0$.
- 4. Après division par y^2 (à justifier), intégrer l'équation puis donner la forme générale de la solution.
- 5. On note h(c) le pôle positif de la solution générale. Étudier la fonction h et en déduire l'intervalle d'existence.

On considère le système différentiel suivant, appelé modèle abstrait de vibration de bulles, dans un domaine Ω borné et régulier dans \mathbb{R}^d , $d \in \{1,2,3\}$ et d'inconnues Y (fonction couleur) et ϕ (potentiel de vitesse):

$$(\partial_t Y + \nabla \phi \cdot \nabla Y = 0, \tag{4a}$$

$$Y(0, \boldsymbol{x}) = Y^{0}(\boldsymbol{x}), \tag{4b}$$

$$\begin{cases} \partial_t Y + \nabla \phi \cdot \nabla Y = 0, & (4a) \\ Y(0, \boldsymbol{x}) = Y^0(\boldsymbol{x}), & (4b) \end{cases}$$

$$\Delta \phi(t, \boldsymbol{x}) = Y(t, \boldsymbol{x}) - \frac{1}{|\Omega|} \int_{\Omega} Y(t, \boldsymbol{x}') d\boldsymbol{x}', & (4c)$$

$$\nabla \phi \cdot \mathbf{n}_{|\partial\Omega} = 0. \tag{4d}$$

Lorsque Y^0 est la fonction indicatrice d'un sous-domaine Ω^0_1 de Ω , ce système modélise une évolution simplifié de deux fluides non-miscibles. Il présente un couplage entre une équation hyperbolique et une équation elliptique.

On admet que si la donnée initiale est suffisamment régulière, il existe une unique solution Y continue par rapport aux variables de temps et d'espace.

L'espace $\mathscr{D}([0,T])$ est tel que si, pour toute fonction $\theta \in \mathscr{D}([0,T])$, la fonction $h \in L^{\infty}([0,T])$ vérifie : $\int_0^T h(\tau)\theta(\tau) d\tau = 0$, alors $h \equiv 0$. De plus, toute fonction de $\mathscr{D}([0,T])$ est nulle en 0 et en T.

- 1. (a) Ecrire le système en une dimension d'espace, avec $\Omega = [-1, 1]$.
 - (b) Donner l'expression du champ de vitesse $\partial_x \phi$ en fonction de Y.
- 2. Y-a-t-il unicité du potentiel de vitesse ϕ ?
- 3. Que dire si l'on change Y^0 en $-Y^0$?
- 4. On note $\|Y\|_0(t) = \left[\int_{\Omega} Y^2(t, \boldsymbol{x}) d\boldsymbol{x}\right]^{1/2}$.
 - (a) Montrer que $(\|Y\|_0^2)'(t) = \int_{\Omega} \Delta \phi(t, \boldsymbol{x}) Y^2(t, \boldsymbol{x}) d\boldsymbol{x}$.
 - (b) En déduire que :

$$||Y||_0(t) \le ||Y^0||_0 \exp\left[t \sup_{[0,t] \times \Omega} |Y|\right].$$

- (c) Que dire dans le cas où $Y^0 = 0$?
- 5. Soit (φ_n) une suite de fonctions sur Ω qui converge faiblement vers la fonction $\mathbf{1}_{\Omega}$. Soit $\theta \in \mathscr{D}([0,T])$. On suppose ici qu'il existe une solution au système (4) sur l'intervalle [0,T] de la forme $\mathbf{1}_{\Omega_1(t)}(\boldsymbol{x})$, avec $Y^0(\boldsymbol{x}) = \mathbf{1}_{\Omega_1^0}(\boldsymbol{x})$ et $\Omega_1(0) = \Omega_1^0$. On pose alors $f(t) = \frac{|\Omega_1(t)|}{|\Omega|}$. On admet que f est dérivable sur [0,T].
 - (a) Multiplier l'équation (4a) par $\varphi_n\theta$ puis intégrer en espace-temps.
 - (b) Quelle égalité obtient-on après passage à la limite?
 - (c) Déduire de ce qui précède que la fonction f est solution de l'EDO : f'(t) = f(t)(1 f(t)).
 - (d) Analyser cette EDO et déterminer sa solution, ainsi que son temps d'existence.
- 6. On souhaite étudier les solutions radiales dans le cas où Ω est un cylindre en 2 dimensions. On rappelle qu'en coordonnées polaires, en notant $f(r,\theta) = \tilde{f}(x,y)$:

$$\begin{pmatrix} \partial_x \tilde{f} \\ \partial_y \tilde{f} \end{pmatrix} = \begin{pmatrix} \partial_r f \\ r^{-1} \partial_\theta f \end{pmatrix}, \qquad \Delta \tilde{f} = \partial_r^2 f + \frac{1}{r} \partial_r f + \frac{1}{r^2} \partial_\theta^2 f.$$

- (a) Récrire le système en coordonnées polaires.
- (b) Rechercher les solutions radiales du type : $Y(t, r, \theta) = \mathbf{1}_{\{0 \leqslant r \leqslant \rho(t)\}}(r)$ avec une condition initiale du type $Y^0(r, \theta) = \mathbf{1}_{\{0 \leqslant r \leqslant \rho_0\}}(r)$, $\rho_0 > 0$ donné.

On admet que $\partial_t Y = \rho'(t)\delta_{r=\rho(t)}$ et $\partial_r Y = \delta_{r=\rho(t)}$.